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Abstract

For the precision calculations in perturbative Quantum Chromodynamics (QCD) gigantic
expressions (several GB in size) in terms of highly complicated divergent multi-loop Feyn-
man integrals have to be calculated analytically to compact expressions in terms of special
functions and constants. In this article we derive new symbolic tools to gain large-scale
computer understanding in QCD. Here we exploit the fact that hypergeometric structures
in single and multiscale Feynman integrals emerge in a wide class of topologies. Using
integration-by-parts relations, associated master or scalar integrals have to be calculated.
For this purpose it appears useful to devise an automated method which recognizes the
respective (partial) differential equations related to the corresponding higher transcendental
functions. We solve these equations through associated recursions of the expansion coeffi-
cient of the multivalued formal Taylor series. The expansion coefficients can be determined
using either the package Sigma in the case of linear difference equations or by applying
heuristic methods in the case of partial linear difference equations. In the present con-
text a new type of sums occurs, the Hurwitz harmonic sums, and generalized versions of
them. The code HypSeries transforming classes of differential equations into analytic
series expansions is described. Also partial difference equations having rational solutions
and rational function solutions of Pochhammer symbols are considered, for which the code
solvePartiallLDE is designed. Generalized hypergeometric functions, Appell-, Kampé
de Fériet-, Horn-, Lauricella-Saran-, Srivasta-, and Exton—-type functions are considered.
We illustrate the algorithms by examples.
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1 Introduction

The present and upcoming physics results at the Large Hadron Collider (LHC) at CERN
yield fascinating precision data, which require further important precision calculations in
perturbative Quantum Chromodynamics (QCD). In short, gigantic expressions (several GB
in size) in terms of highly complicated divergent multi-loop Feynman integrals have to be
calculated analytically to compact expressions in terms of special functions and constants. It
is a general observation, that the Feynman parameter integrals for certain classes of topolo-
gies can be expressed in terms of higher transcendental functions of the hypergeometric
type, cf. e.g. [1-4]. This concerns their representation before expanding in the dimensional
parameter ¢ = D — 4, with D the dimension of space—time. Here we consider the gen-
eralization of the Euler integrals to the generalized hypergeometric functions , F;;, and the
multiple hypergeometric functions of the Appell-, Kampé de Fériet-, Horn-, and Lauricella-,
Saran-, Srivastava-, and Exton type [4—24]. In physical applications a standard integration
method is that of solving systems of ordinary and partial differential equation systems [25—
32] generated by the integration by parts (IBP) relations [33—41]. Usually these methods
provide coupled systems of first order linear differential equations. In the ordinary case
(differentiation in one variable), one can decouple the corresponding systems, cf. [42, 43],
using algorithms which are available, e.g., in OreSys [44] leading to higher order linear
differential equations. In the case of coupled systems of partial differential equations one
may use, e.g., Janet bases [45, 46]. In this context it is important to recognize the differ-
ential equations of the classes of the aforementioned functions, since their mathematical
structure is widely known. This allows the direct analytic solution of at least this part of the
physical problem. Starting with certain topologies, more general differential equations will
contribute, requiring different solution technologies. Structures of the above kind have been
obtained in general off—shell representations at the one—loop level for multi-leg diagrams,
cf. e.g. [47-55]. At the two- and three—loop level for various scattering processes related
structures are found, cf. e.g. [18, 19, 56, 57]. For all the above quantities the (partial) differ-
ential equations are known and they partly turn out to be of rather high order. On the other
hand, one may consider the formal multiple Taylor expansion of these higher transcendental
functions, which allows one to obtain difference equations for the corresponding expansion
coefficients. This is advised, since these are remarkably simpler.

In a nutshell, we are given huge sets of (coupled partial) linear differential equations
and one seeks for solutions that will provide new insight of elementary particles and their
interactions. In this article we will elaborate new symbolic tools to provide such solutions
automatically in terms of hypergeometric structures with the long-term goal to provide
large-scale computer understanding in QCD. More precisely, we describe a general solv-
ing machinery and a systematic classification of partial differential equations for scalar or
master integrals of one or more scales w.r.t. known solutions in the hypergeometric classes,
which can be considered as a first non-trivial step towards computerization of knowledge
of special function results in QCD. These differential equations have multivariate multiple
series solutions
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-
for parameters xp, ..., x, in the vicinity of (0), as formal Taylor series. A central step in
our solving strategy is the fact that one can compute partial difference equations for the
expansion coefficients f(ny, ..., n,) from the given differential equations; compare [58—60].

For the ordinary case r = 1 the obtained recurrences can be solved in terms of indef-
inite nested sums defined over hypergeometric products' using difference ring techniques
[61-67]. This leads to a general method that can find all solutions of a given univariate
linear differential equation in terms of power series solutions where the expansion coeffi-
cients are given in terms of hypergeometric products or indefinite nested sums defined over
such products. The method works for differential equations that also depend on general
values of the space—time dimension D = 4 4 ¢. The infinite series representations found
can be finally expanded in the dimensional parameter &, which transforms the summand
in terms of Pochhammer symbols? and general hypergeometric products by introducing
in addition (cyclotomic) harmonic sums [68-70] or generalized versions, like Hurwitz
harmonic sums. In the general case first product—solutions emerge, which can be fac-
tored into Pochhammer—structures by solving algebraic equations. Alternatively, one can
keep the multiplicands in non-linear form and can apply a new function implemented in
the package EvaluateMultiSum that produces the e—expansions without introducing
algebraic extensions. The e—expansion for (generalized) hypergeometric functions can be
performed straightforwardly using their series representations. The problem to be solved
is to sum the corresponding infinite series, for which we use the algorithms implemented
in EvaluateMultiSum and can solve all problems associated to first—order factorizing
recurrences. > In most cases, we will limit our consideration to the principal structure of
the known classes of higher transcendental functions of the hypergeometric type, i.e. those
where f(n1)(= f(n)) is given by Pochhammer-ratios.

For the multivariate case » > 1 many partial linear differential equations coming from
QCD lead to special first-order coupled systems of partial linear difference equations in
terms of the expansion coefficients f(n1, ..., n,). For this important special case we show
how the above techniques can be carried over to this multivariate case.

All the above symbolic tools can be utilized to find hypergeometric structures that
emerge in the calculation of Feynman integrals using Feynman parameter representations
from the simplest topologies onward, cf. e.g. [82]. In the most simple cases (for the ordinary
case r = 1) they can be calculated in terms of Euler Beta functions

! _ _ C(a)l(D)
a—1,1 _ \b—1 _
B(a,b) = /0 dzz°7'(1 —2) = Tath

where I'(x) denotes the Euler I'-function. Here and in the following we represent the
respective higher transcendental functions in their convergence region but allow to perform
analytic continuations to their whole analyticity range, cf. [83]. The next more involved
function is the Gauf} hypergeometric function

a az (D) ! —1 br—a;—1 _
F 3b1,2) =2 F 2l = ——————— dxx"T (1 =) (1 —zx)™®
2F1(ar, a2, b1,2) =2 1|: by Zj| F(a1)1"(b1—a1)/0 xx7H (1 — x) (1 —2zx)
_ i (@)@ 2" )
=0 (b1)n n!

1]_[2:@ h(k) is called hypergeometric in n if £ is a nonnegative integer and % (k) is a rational function in k.
2In the following (x), = x(x + 1)...(x 4+ n — 1) denotes the Pochhammer symbol where x is an element
from a ring (containing the integers) and n is a nonnegative integer.

3For a series of special cases the approaches in Refs. [71-81] can be used.

@ Springer



594 J. Blimlein et al.

followed by generalized hypergeometric function ;| F), introduced by the iterative integral

I'(d) Lol d—cel a ... ap cai..ap
- ' F, ; = p+1F 1z
T(Ord— c)/ =07 e g, 5 T e gy,
in this article we will utilize the series representation
o
aip .. ap @n...(apn 2"
F, iz | = —_— —. 3)
b "[ by ..bg ] X:E) (b - - (bg)n n!
For r > 2 other topologies [57] can be discovered that lead, e.g., to Appell functions, like
F1 defined with the integral representation

1 1
I = / de/ dunb(1 —wi — w)w? ' wd =11 = wy — w) PN — wix — way) @
0 0

_ T @) —b—b) P
— B Fi(a;b,b";¢c; x,y)

or with the series representation

Fi(a: b, b:c:x, y) = Z Z (a)ern(b)m(b In myn )

In!
m=0 n=0 m:n: (C)m+n

The advantage of all these representations lies in the fact that multiple Feynman parameter
integrals are reduced to much lower dimensional infinite sum representations, which are
one—fold in the case of generalized hypergeometric functions, two—fold e.g. for Appell and
Horn functions [8, 9, 12, 13, 18, 19], three—fold for the Srivastava functions [20] and further
given by multi-sum Lauricella-type functions [21] in more involved cases, with an early
application in [56]; a detailed list of these functions is given in Appendix A.

Remark. The solution of Feynman integrals through Feynman parameterizations map-
ping to higher transcendental functions is not a method which can be easily made uniform.
At a certain stage it will also require the use of Mellin—Barnes integral representations
[84-87] to be solved by the residue theorem. Important early applications were made in
[88, 89]. Although this method can establish links to higher transcendental functions in
principle since those have Pochhammer Umlauf-integral representations [7, 90, 91], it may
easily lead to non—minimal representations [92] which are difficult to reduce analytically,
if one is not only interested in numerical results [93-95]. For multiple Mellin—Barnes inte-
grals see Refs. [96—100] and applications [101, 102]. Another method to compute Feynman
integrals is also the method of negative dimension (also called the method of brackets)
[18, 19, 103-124], which is equivalent to Davydychev’s Mellin-Barnes representation.
Given the sum representation (1) of such transcendental functions one may try to simplify
the obtained multiple sums in terms of hypergeometric products and indefinite nested sums
to expressions that are purely given in terms of indefinite nested sums using the package
EvaluateMultiSums [125-128]. The underlying summation engine is based on the
package Sigma [61, 62] that contains non-trivial algorithms in the setting of difference
rings [63-67, 129-137].

Besides this summation toolbox for various important special cases that arise within
the precision calculation in QCD, we will consider general partial linear differential equa-
tions for master integrals w.r.t. their parameters. As mentioned above, also these partial
differential equations can be mapped to corresponding partial difference equations, and the
crucial step consists of solving these derived equations. In order to overcome the lack of

@ Springer



Hypergeometric structures in Feynman integrals 595

such a desired solver, we will combine ideas from [138, 139] and the difference ring set-
ting [64—67] yielding the new package solvePartialLDE. More precisely, exploiting
(heuristic) methods elaborated in this article, we lay the foundation for a new solving tool
and demonstrate how one can hunt for solutions within the class of indefinite nested sums
over hypergeometric products.

The paper is organized as follows. In Section 2 we list the differential equations of the
multi—variate generalized hypergeometric functions up to four variables in explicit form,
parameterizing them linearly. There are also general differential equations as those for the
hypergeometric functions , F;, the Kampé de Fériet function [11], and the Lauricella—Saran
functions [21-23]. Furthermore, we derive the recursions for the multivariate expansion
coefficients of these functions. An algorithm is presented in Section 3 to find hypergeomet-
ric product solutions for first-order linear recurrence systems. In this way the multivariate
functions f(x, ..., x,) can be represented in the vicinity of (0),. The parameters of the
differential and difference equations depend also on the dimensional parameter . Usually
one would like to perform corresponding expansions in this quantity, which we describe in
Section 4. Here the so-called Hurwitz harmonic sums and more general versions occur, the
summation problem of which can be dealt with the packages EvaluateMultiSums and
Sigma. In Section 5 we demonstrate the full machinery, to obtain for a given system of
linear differential equations the first coefficients of the e—expansions in terms of indefinite
nested sums and products. In Section 6 we supplement the solving tools from Section 3 and
turn to general partial difference equations with rational coefficients. Based on the algo-
rithms presented in [138, 139] we present different strategies to find solutions in terms of
hypergeometric products and iterative sums over such products that appear in the calcula-
tion of Feynman integrals. Section 7 concludes with an outlook how these symbolic tools
may be combined with tools coming from artificial intelligence.

In Appendix A we provide for convenience a list of the main functions dealt with in the
present paper, which are defined by their series representation, see also the file cases.m.
Appendix B illustrates the matching conditions to be met to obtain from the general solu-
tions in a direct way the Pochhammer-type solutions. They are given in computer-readable
form in the file Mconditions.m. In Appendix C a brief description of the commands of
the code HypSeries is given and Appendix D provides a brief description of the code
solvePartialLDE. For both cases we will provide Mathemat ica notebooks illustrat-
ing the corresponding operations in examples. In Appendix E a special constant is evaluated,
which appears in one of the examples. Appendix F lists the Mathematica and other
software packages required to execute the example notebooks.

2 The differential and underlying difference equations

Multivariate master integrals obey partial differential equations, which are obtained after
the IBP reduction [33—41] and, if necessary, the decoupling of coupled systems [42—44]. In
this way differential equations of higher than first order are obtained.
The first class concerns the univariate case of the generalized hypergeometric func-
tions (3). The differential operator of Gau}’ , F; function reads, cf. [7],
d? d

X(l—X)ﬁ+(c—(a+b+1)X)E—ab, )
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which we write more generally as

2

x(1 —x )d 2~|—(A1—|—le)——i-C (6)

For the function 3 F, one obtains

3 d2
2(1—x)—+x(A2+BQx) 5+ (A +le)—+c (7)
with Ay =b1+by+1,B=—-CB+a1+a +a3), Ay = biby, By = —(axay + aza; +
axaz+ay +az+az+1), C = —ajazaz. In general, we get for | F), the linear differential
equation
dp+1 i1 k
P(1 —

(1= x) +Zx (Ak + Bix) - + C. ®)

The , F,; function is the homogeneous solution of the differential operator

d d d d d
XE<XE +b1 — 1)()65 +bq — 1) — (XE +a1>...<xa +Clp>. (9)

The products of the differential operators in (9) ¥ = x(d/dx) = xd,, can be written in the
following form

9 = xdy (10)
92 = xd, +x°9? (11)
03 = xd, +3x%92 + 797 (12)
9 = xd, + 76202 + 6x307 + x*9? (13)
93 = xd, 4+ 15x%9% +25x%97 + 10x*9% + x787, etc. (14)

Inserting this into (9) will imply the corresponding general differential operator, which has
the form

m dk
D P, (15)
k=0 *

with the corresponding polynomials Py (x) and m = max{p + 1, g + 1}. The coefficient
polynomials result from the expansion of (9).

Here and in the following we will first parameterize the differential operators in general
terms. In the literature the different coefficients are usually related by algebraic equations,
which is possible, but not necessary. The list of these equations are given in a subsidiary file
to this paper. The differential operators for the bi—variate Horn type functions [8—13] F to
F4, Gy to G3, and Hj to H7, including the Appell functions [8, 9], are given by

a+ (bx +0)d, +x(d + ex)d} + fydy + (gy + hxy)di , + jy*d; = 0 (16)

ar+ (bry + c)dy + y(di + €1)3; + fixds + (g1x + hixy)dy  +j1x>d7 = 0,(17)
with the example of the Appell F; function

Fi i x(1=x)3; + y(1 —x)87 , + (A + Bx)d, + Cydy + D (18)

Fi o y(1= )3 +x(1— )7, + (A + B'y)dy + C'xd, + D', (19)

Here af!y = 0,3y, etc.
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In physical applications two more differential operators appeared in the bi—variate case,
[18, 19], to which the functions S; and S, belong. The differential operators read

S1t @+ (c+bx)dy + x(d + ex)d} + x>+ px)d; + fydy + x(q +rx)yd7dy + jy*o;
+sxy%0,97 + (gy + hxy)dy (20)
Cay+ fixde + 15797 4 (1 + biy)dy + y(di + e1)d5 + (q1x + hixy)oy,  (21)
Syt a+ (c+bx)dy + x(d + ex)d} + x>+ px)d; + fydy + x(q +rx)yd7dy + jy*o;

+sxy2 0y 83 + (gy + hxy)a)%!y (22)
ay+ fixde + (e 4 b1y)dy + j1x7970y + y(d) + e1)0; + qixydcd; + pr1y2a;
+(g1x + hixy)d} . (23)

For the Kampé de Fériet function

it [ (ap); (bg); (ck) ¥ y} > 10 @p)ras T2 @), nﬁzl(c/‘)x Xy

m.n = m n o 24)
B @) (B () Z:o [T @)rts T B [Ty (s 7!
= Z f(r, s)x"y* (25)

r,s=0

one obtains the following annihilating differential operators [10, 11]
p q 1 m
[T +yoy +ap) [Jeox +b) — o [[ oy +y0y — 1+ ) [@de — 1+ ) =0, 26)
j=1 j=1 j=1 j=1
p k 1 n
[Tos +yoy +ap [Jooy +e) =y [J o +yay — 1 +ap) [Jody — 1+ =0.27)
j=1 j=1 j=1 j=1

The differential operators for the triple hypergeometric series [20] read

D3y = A+ (Bo+ Bix)d, + x(Eo + E1x)3; + Crydy + Fiy*3; + (Ho + Hix)yo;

+D120; + G12°07 + (Lo + L1x)297 _ + S1y20; _ (28)
D3> = A+ Bixdy + E{x?02 + (C) + C{y)dy + y(Fy + F{y)8? + x(Hj + H{y)d2.,

+Dz0; + G} 2702 + Lixzd? . + () + S{y)zd2 . , (29)
D33 = A"+ B{xdy + E{x*0; + C{ydy + F{'y*3; + H{xyd; , + (D§ + D{2).

+2(Gj + GY2)02 + x(Ly + L{2)d7 . + y(S5 + ${2)93 .. (30)
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The differential operators for the quadruple versions are given by
D4y = A+ Eitd + L1178} + (Bo + B1x)dy + x(Fo + F1x)9; + 1 (P + Pix)37, + C1ydy
+G1y%0} + Rityd} , + (Mo + Myx)yd} | + D120, + Hiz*07 + S11z07,
+(No + N1x)zd2 . + Q1yz92 ., 31
Dyy = A+ Ejtd + L1297 + Bixd, + F{x292 + P{1xd}, + (C{ + Cly)dy + y(G + G y)d?
+H(Ry + R, + x(My + M{y)97 |, + Djzd- + H{2*0? + Sjtz0;, + Nixzd]
+(Q)+ 010203, 32)
Dy3 = A"+ EYtd, + {10} + B{xd, + F{/x*37 + P/'txd] + C{ydy + G{y?9] + R{1yd
+M{xyd2 , + (Df + D{2)d; + z(HY + H{'2)d2 +1(S§ + S{2)d7 . + x(NJ + N{'2)d7 .
+y(05 + Q12)05 . . (33)
Dys = A" + (EJ' + E{'D)3; + t(L{ + L0397 + BY'xd + F{"x*8 + (Py + P{"1)xd?,
+C'ydy + GY'y202 + (RY + R{'0yd2, + M{'xyd? , + D{'zd. + H{'z%0?
+(Sy + 810207, + N{'xz0} . + Q' yzd? .. (34)
They cover the functions K;, i = 1...21 of Refs. [14, 15].
Utilizing holonomic closure properties [58-60], i.e., the power series Ansatz (1) and
equating coefficients with the same exponent one can compute difference equations for the

expansion coefficients from the differential equations given in Section 2.*
The following recursions are obtained:

2F  (CHn(l—n+B)fm)+A+n)n+ADf1+n)=0 (35)
3F @ (nBi+ (n— DnBy+ C — (n —2)(n — Dn)f(n)
+((m+ DA +n(n+ DA+ (n — Dn(n+ D)fn+1) =0 (36)

[c 1 B
piifp [E T —p—1) +k§ (n—k)!]f(n)
o+ 1 7+i7Ak +1)=0 37
(n )[(n_p)! b3 (n—k+1)z]f(” )=0. 37)

In the bi—variate cases the expansion coefficients of the Horn—type functions obey

[a Fbm+em—Dm+n(f+hm+ jon— l))]f(m,n)

+(1 +m)(c+dm+ gn)j(1 +m,n) =0, (38)
[al + fim + ji(m — Dm +n(by + hym + 1 (n — 1))]f(m, n)
+(1 +n)(c1 +g1m + din)f(m, 1 +n) =0, 39)

4There are also contiguous relations for the corresponding functions, cf. [4, 140, 141].
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and for the S;-functions one has

[a+bm +em—1m+ fn+hmn+ jin—n+ (m —2)(m — )mp + (m — )mnr
tm@n — l)ns]f(m,n) +d +m)[c+gn +m(d+1m—1) +nq)]f(l T m,n) =0, (40)

[a1 + fim + ji(m — Dm +n(by +him + ey (n — 1))]f(m, n)
+(1 +n)(c1 +gim +din)jim, 1 +n) =0, 41)

as, likewise, for the S,-functions

[a +bm+e(m—1)m+ fn+hmn—+ jin— n+ (m —2)(m — )mp + (m — V)mnr
Tmn — l)ns]f(m, m)+ (1 + m)[c Fent+m(d+1(—1+m)+ nq)]f(l T m,n) = 0,42)
[a1 + fim +n(bi + him + e1(n — 1))]f(m, n)+ (1 + n)[cl T nld + (=1 +mp1)

+m (g1 + ji(m — 1)+nq1)]f(m, 1 4n)=0. 43)

For the expansion coefficients f(r, s) of the Kampé de Fériet functions the recurrences read

p q l m
[[o+s+ap[]e+bpie.s) =+ D[] +s+ap [0+ Bpie+1.5)=0, 44

j=1 j=1 j=1 j=1

)4 k 1 n
[To+s+ap [ +cpitis) =+ D] +s+ap [[6+rpitns+1)=0. 45

j=1 j=1 j=1 j=1

The coefficients in the tri-variate cases obey

|:A+Blm+E1(m —Dm+Cin+ Hmn+ Fi(n— )n+Dip+ Limp+Gi1(p—1D)p
+n1751]f(m, n, p) + (1 +m)(Bo + Eom + Hon + Lop)f(1 + m, n, p) =0, (46)

[A’+B;m+E;(m — Dm +Cjn+ Hjmn + F{(n — n+ D} p + Limp + G, (p — p
+npS; [fon. n. p) + (1 +n)(Cy + Hym + Fgn + pSpion, 1+, p) =0, @7

[A” + B/m+ E|/(m —\)m + C{n+ H/mn + F/'(n — \)n + D{p+ L{mp + G (p — 1)p

+npSf]f(m, n, p) + (14 p)(D§ + Lym + Gyp +nSy)f(m,n, 1 + p) = 0. (48)
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For the four-variate systems one has

[A+Blm+F1(m —Dm+Cin+mMin+Gi(n— Un+ Dip+mNip+ Hi(p—1p

+E1q +mPig + Li(g — g +npQ1 +ngRi + pg$i [iom. n, p.q) + (1 m)(Bo + Fom
+Mon + Nop + Pog)f(1 +m.n, p,q) =0, (49)

[A/+B;m+F{(m— Dm + Cjn+mM|n + G (n — On + D, p+mN|p+ H|(p — D)p

+E\q+mP{q+L\(qg—1)g+npQ| +nqR| + pqSi]f(m, n,p,q)+ (1+n)(Cy+mM,
+Gon + pQy +qRyFm, 1 +n, p,q) =0, (50)

[A” + B{'m + Fl”(m — m + Ci/n + mM{'n + G'l'(n — Dn + Di/p +mN{’p + Hl”(p —Dp

+E{q+mP/q+L{(q — 1)g +npQ| +ngR] + pqSi/]f(m, n.p.q)+ (1+ p)(D{ +mN}
+Hyp+nQ5+qS)fm,n, 1+ p,q) =0, 1)

[A/" +B'm+ F"(m — )m + C{'n+ mM{'n + G{'(n — )n + D{"p + mN{'p

+H'(p = Dp+ E{'q +mP{'q + LY (g = g +np QY +ngR{" + pqs{|ion. n. p.q)
+(1+q)(Eg +mPy" + Lg'q +nRy + pS;)f(m,n, p, 1+ 9) =0. (52)

3 The solution of the recursions

Let K be a field of characteristic O (i.e., a field that contains Q as subfield). A power series
in r variables

f(xl,...,x,.):ZA(nl,...,nr)x;”-ux;” (53)

n;>0

is called a multiple hypergeometric series if the multivariate sequence A : N* — K is
hypergeometric, i.e., we have

siAny,...,ni,...,n) =t A(ny,...,n; +1,...,n;), i

Il
—_

T (54)

for polynomials s;, t; € K[ny, ..., n,] being coprime.

Often the hypergeometric sequence A is given in terms of binomial coefficients,
Pochhammer symbols, I'—functions and related special functions. However, in concrete
applications one often starts with a given system of partial linear differential equations and
searches for a hypergeometric series solution as specified above. Plugging this Ansatz into
the equations and doing coefficient comparison w.r.t. x'l” ... x" yield a system of partial
linear difference equations; for concrete examples see Section 2. In the general case not
too many methods are known that can support the use to solve these difference equations;
for some first steps in this direction we refer the reader to Section 6. In the following we
concentrate on first—order systems of the form (54).
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We remark that in many concrete applications such a system (54) can be found. In par-
ticular, this is the case if the underlying system of linear differential equations is of the
form

[si(xli,...,xii,... X i)—lt< li ...,x,—i—1,...,x,~337r>i|f(x1,..‘,x,):0.

0x; 0x; ’ ’ax, X 0x1 0x;
(55)
To show this, we utilize the crucial property
a
xigx?' xpr = nx e x (56)
1
which implies that for a polynomial p(ny, ..., n,) we have
9 9 9 ny n ny n
X]— e, Xi— oo Xp— )X, X = p(ng, ..., 00)X, x0T 57
p(l81 'E)x,- rBXr)l r p(ny 1)1 r 57
Thus
[Si(xlﬁ,-..,xz‘a%,-. xrax )]f(xl,..-, )
=Y si(n, ... 0. n) AL, ng, o n)x X (58)
n;=>0
[li(xlﬁ,m,xia%—l, xr;)x >]f(x1,~~-, )
=Y i, ....oni— 1. n)A@, . ong, L n)x) e x (59)
n; >0
and therefore, dividing the second equation by x; from the left,
[ 1 N ( ad ad | ad )]f( )
— — e xi— =1, — X1y vy X
X; ! 8x1 lax,- er, ! !
= Zti(nl,...,n,- — 1,...,n,)A(n],...,ni,...,n,)xf1 -~-)ci""_1 S A (10))
n;>0
The coefficient of the term x]' ---x;"" - - - x/" in (58) and in (60) is respectively
si(ny, ..., niy ..., n)AMMY, .. NG, Ny) (61)
and
ti(ny,...,nj,...,n)Am1,...,n;+1,...,n.). (62)

This shows, due to (54), that (55) holds.
For example, for the case of the Gaul hypergeometric function 5 F (a, b; c; x) (see (2))
one has

_ (@)n(b)n
An) = 7(c)nn! (63)
s(n) = (@a+n)(b+n) (64)
t(n) = (n+D(c+n) (65)

and the differential equation obeyed by 2 F (a, b; c; x) is, from (55),

[(a +xa>(b+ 88x> - %( ;x)(x% -1 +c)]2F1(a, b;c;x) =0. (66)
3.1 An algorithm for hypergeometric products

Given a hypergeometric sequence A with (54) we seek for a representation in terms of
indefinite nested products that can be modeled, e.g., within the summation package Sigma.
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For the univariate case r = 1 this task is immediate. Since s1,#; € K[n{] have only
finitely many roots, there is a A; € N such that sy (k) # 0 # t1(k) for all kK > Aj. Thus for
np > A1 we get

-1
An) = %A(m _ 1
si(ny = 1) s1(np —2) ! sitk — 1)
= A - 2 == A A' 67
t(ny—1) t1(ny —2) (m1 ) kzl):[+1 fk—1) (A1) (67)

where A(n1) can be written in terms of the hypergeometric product [}’ k=i +1 il‘ ((,’(‘ B which
is nonzero for each n; > 0. In other words, a hypergeometric sequence is either trivial, i.e.,
it is the O sequence from a certain point on (if A(x1) = 0) or is nonzero for all n > Aj.
Next, we turn to the multivariate case. As introduced in [142] we call a sequence non—
trivial if the zero points vanish on a nonzero polynomial from K[y, ..., n,]. In other words
A is almost everywhere a nonzero sequence. An important consequence of [142, Prop 4]
is that for such a hypergeometric sequence with (54) the following compatibility property

holdsforR,'z%lfeK(nl,...,nr):forl§i§j§r,
Ri(nl,...,nj+1,...,n,.) _ Rj(nl,...,ni+1,...,n,) 68)
Ri(ny,...,nj,...,n;) Rj(ny,...,nj, ..., n;) '

In particular, the Ore-Sato Theorem [143-145] holds: A can be written as a product in
terms of geometric products and factorial terms; for a rigorous (and rather involved) proof
see [142] and for further generalizations see [146].

In the following we will introduce a special case of the Ore-Sato theorem that deals with
the problem to represent A in terms of hypergeometric products which are valid for all
(n1,...,n,) € N where the n; are chosen sufficiently large. This is precisely the situation
that we require for hypergeometric power series as given in (53).

As it turns out, such a representation is always possible if we require the following addi-
tional assumptions (which hold in the univariate case automatically): we can choose’ A; € N
such that for all (ny, ..., n,) € N” with n; > A; we have

si(ny,...,n) 0 #t;(ny, ..., 0.).

Therefore (54) is equivalent to

Ay, ...,ni+1,...,n,)=Ri(ny,...,n)A(ny, ..., nj,...,n.), i=1,...,r
(69)
with R;(ny, ...,n,) # 0 for all n; > A;. Applying these relations iteratively shows that for
any (ny, ...,n,) € N with n; > A; there is a c € K\ {0} such that
Ay, ...,n) =cA, ..., Ap).
Similarly to the univariate case we get the following consequence: A(n1, ..., n,) is the zero
sequence (for all n; > A;) if A(A1, ..., Ar) = 0 oritis nonzero for all n; > A; otherwise.

Remark: In the second case all zeroes of A are finite and thus vanish on a particular
chosen nonzero polynomial. Thus we can apply [142, Proposition 4] as above. If the compat-
ibility criterion (68) does not hold, then A must be the zero sequence or the hypergeometric
system is inconsistent.

SIn general there is no algorithm by the Davis—Matiyasevich—Putnam—Robinson theorem [147] that can
decide if there is an integer root (or even infinitely many integer roots). However, in our applications the
polynomials are usually small, mostly even linear and thus such integers A; can be determined.
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With these properties there is a simple algorithm which finds a product representation of
A of the form

n ny ny
c| J] mtkna....n) [T ratkons...ony || [T A0 (70)
k=A1+1 k=Ap+1 k=2, +1
with ¢ = A(Aq, ..., A) € K\ {0} and h; (x,njt1,...,n) € K(x,ni,...,n,) with 1 <
i < r. In particular, we have that nzi:)\,-ﬂ hitk,njy1...,n.) # 0 for all n; > A; with
i=1,...,r.

If » = 1, such a product can be derived immediately with (67) and ¢ = A(X}). Otherwise,
the algorithm works by recursion (induction on > 1). As in the case r = 1 it follows that
we can write

nj
A(,.ooony) = AGa,na,ooon)) [T mitkona, o)
k=Ar1+1

with hi(k,na,...,n,) = Rik — Ling,...,ny) = 3HEpi2et)s note  that
A(Ay,no,...,ny) #Oforall (ny,...,n,) € Nwithn; > A;.
Now consider the multivariate sequence

Al(ny,....np) == A\, na, ..., np)
which satisfies
Ay, ....ni+1,...,n,)=Ri(A1,na,....,n.) A (na, ..., ni, ..., 0, i=2,...,r

with R; (A1, na,...,n,) € K(na,...,n,), where R;(A,na,...,n,) % 0 for all n; > A;.
Obviously, A’ is again hypergeometric with all the assumptions (in particular satisfying the
compatibility criteria in (68)) and we can proceed by induction/recursion. Thus we get

n2 ny
Ay, ...,n.)=c ]‘[ hatk,ny....n) | ... ]‘[ o |,
k=A+1 k=41

with ¢ = A/()Lz, ey }\r) = A()\.l, % T ,)\.r) e K \ {0} and h,‘(x,n,'+1, e ,nr) €
K(x, nj,...,n,) with 2 < i < r. This finally shows (70).
We remark that in all the examples of this article we canset ; =0for1 <i <r.

3.2 Examples

Let us illustrate the solution of some of the recursions in explicit form. Here we refer first
to the general representation of the corresponding differential and difference equations. We
consider the differential equation (6) which leads to the recurrence (35) for the expansion
coefficient f(n). The recursion is of order one and Sigma obtains the following product
solution

P12+ B —C—3i1 — Biiy +i}) P [—CH+HBi—in+ 1 —iN@—in]

oy = (A7), = (A1) ’

an

which is not yet expressed by Pochhammer symbols.
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Mathematica allows to obtain the factorization of the product in (71) in terms of
Pochhammer symbols by

Fo = e, 72

with

1 1
a12) =—§(1+Bl):|:§\/(l+B1)2+4C. (73)

By replacing Ay, By and C directly to

C—> —ab, Ay >c¢, B> —-1—a—-b (74)
one obtains
(@)n(D)n
fn)y=——-—7-. (75)
(¢)pn!

This choice of variables is therefore instrumental to obtain the most simple structure. How-
ever, it will sometimes not naturally appear in the physical differential equations, requesting
associated variable transformations in general.

This becomes more and more involved in higher hypergeometric cases, which is already
illustrated in the case of the generalized hypergeometric function 3 F;. Its differential
equation (7) implies the recurrence for f(n) (36) with f(0) = 1, which has the solution

[T [=C+Bi(1—i1) = B2(2—in)(1 —i1) = (3 —i1) (2 —ix) (1 —ir)]

fn) = - - - . (76)
n! I—[?I:I[Al — A2(1 — 11) + (2 - ll)(l — ll)]
Equation (76) can be rewritten in terms of radicals by
(@1)n(a2)n(@3)
f) = T )
-2+ 5-%),(-2+F+3),
with
z Vi +z iV +z J=2z
m=1- @y Yata Watn, VoI (78)
3 62 2J2V3  3Ja+z
2 Ju+z \35&
w=1-2 - (79)
3 332 3Jz1+ 22
z Vi +z2 i +z —1)23327
a3=1——4+“/13 2+\/31 2_(?) 3 (80)
3 62 2323 3Jz1 + 22
71 = 27C + (3+ B2)(9B1 + B2(3 +2By)) (1)
22 = V=43 +3B1 + Bo(3 + B2))3 + (27C + (3 + B2)(9B; + B>(3 + 2B2)))2(82)
73 =3+3B1+ B3+ By) (33)
24 =6+ B (84)
zs = V—4A| + (A — D2 (85)
After performing the replacements
Ay > bi+by+1, Bp—> —B+a+ay+a3), Ay — biby,
Bi = —(ama1 +a3a1 +axaz +ar+ax+a3+1), C - —ajaxa3 (86)
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one obtains

(al)n(a2)n(a3)n
= 87
A WS &7

One observes that the substitutions (86) are related to the root—relations by Vieta’s theorem
[148] for the roots r; of the algebraic equation

x4 Z an_ix" % =0, (88)

which obey

—ay—1 =n1r+..+nr
an_y = ri(rp+...+ry)+r0s+..r)+ .. Frn_1r,

(=D"ag = ry...1r. (89)

In all cases, which can be solved by a single recurrence at the time the above procedures are
applied. Considering the generalized hypergeometric function 1 F), the product—solution
for the expansion coefficient reads

1 Z][: I'Bikl - Lv
fn) = 1_[ i—p=2)! Il 2)! (= I)Akl @—=Dn! (90)
i=1 G—p=D" p 1! + Zk 1G=h)!

and one may factorize the corresponding product as in the above examples. However, the
corresponding roots can in general only be obtained numerically. Still one may work with
the corresponding symbolic expressions. This is in particular useful w.r.t. their expansion
in the dimensional parameter &, which is contained in the quantities A,, B, and C in
polynomial form.

We turn now to the multivariate case. Here we have explicit formal solutions which apply
to all concrete cases listed in the appendix, resp. in the files attached, but may cover even
more cases. To find this out for concrete parameter settings one is advised to check whether
these particular solutions obey the corresponding difference equations.

For the Horn—type functions one obtains from (16), (17) the product solution for f(m, n)

fiud ) [ﬁ —a+b—2€—fn+hn+jn—jn2—bi1+3ei1—hnil—eilz]
m,n) =
" L (c—d+gn+di)i

1
o - +b —2ey — byiy + 3eyiy — eyi?
[1—[ ay + by — 2ey — byiy + 3eqiy — ey } 1)

—dy +diiy)i
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and for the functions S; and S» one has

n . . .2
—ay + by — 2e1 — byiy + 3eriy — el
JouGmm) = [l_[ (c1 —d +d1i1)i1

i1=1

m
1
X —a+b
[l_[ ((c—d+21+gn—nq+di1 — 3liy + ngi +li12)i1(

i1=1
—2@—fn+hn+jn—jn2+6p—2nr—ns+nzs—bi1
+3eiy — hniy — 11 piy + 3nriy + nsiy —nzsil — ei% —i—6pi12 — nri%

wi?))} (92)

n

fo, () (1—[ —a1+b|—261—b]i1+361i1—e|i12 )
s, (m,n) = - - W
: f=1 (c1 — di +2p1 +dviy — 3piit + prid)iy

m
1
X - - - ——(—a+b—2e— fn
|:i£[1 <(c—d+21+gn—nq +diy — 3li1 + ngi; +1112)11

+hn + jn —jn2+6p—2nr—ns+n2s — biy + 3eiy — hniy — 11 piy 4 3nri;

+nsiy — n’si; — ei12 + 6pi12 - nri12 - pi?))]. 93)

Equation 91 can be rewritten as

) — (="t (5)"’(2)"(_1+ﬂ_i>
fn,m) = (C]) (£+ﬂ) d d 2 2 2/,

mln!l —
a)\a"a),
S/ _1+£+hj_2) (_1+£+@+2
2 2 2/, 2 2 2 2/, 2 2e 2e 2e m’
%4
with
ri = V(b1 —e1)? —4ae (95)
r = \/(b—3e+hn)2—4e(a—b+2e+fn—hn—jn+jn2). (96)

The Pochhammer-form of (94) directly allows the e—expansion, if the free parameters
in the Pochhammer symbols are replaced accordingly by expressions that contain also
the e-parameter. Further simplifications are obtained using the replacement rules given in
Appendix A. E.g. for the Appell function F; one obtains

— (a)m+n (lg)m (ﬁ/)n

() e G

fn,m)
by using the replacements given in (298), Appendix B.
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In the tri—variate cases one obtains

m . , 2
—A+ By —2E| — Byiy +3Ei] — Eqi
f(m,n,p)=<|| - ‘)
i=1 (Bo — Ep+ Eoll)ll

1

n
X[li[l <(C(’) Fy+ Hym + Fo”)

B

(—A' +C} —2F] —

+E{m + H{m — E\m* — C}iy + 3F|iy — H{mi, — F{i%))}

P
1
% A// + D// 2G// _ B//m + E//m
[,E((Dg_(;ngLngrns G”zl)zl( ! Lo !

+L{m — E{m* — C{n + F{'n — H{/mn — F/'n> + nS| — D{iy +3G'iy — Lmi,

nSliy — /{if))]. 98)

Finally, in the four—variate case the product solution reads

—A+ By —2F| — Byiy +3Fiy — F]i12>
(Bo - Fy+ Foil)il

fon,n, p.q) = (]_[

i1=1

n
1
X A"+ C; — 2G| — Bim + F{m
[n(c’ Gy +mMj + Gjiy)iy “ ! ! !

i=1

—F{m® +mM| — C}i1 +3G}i1 — mMij — G’lif)]

P
1
x ——(—A" + D] —2H{ — B{m + F{'m
[,[[u (Dy—H{ + mNj +nQf + Hyli1)iy

—F/m? = C/n+ Gn —mM{n — G{n* + mN/ + nQ — D/iy +3H/'i

- N .2
—mN|iy —nQjiy — H; 11)j|

( A/// + E{// _ 2L/1// _ B;//m

q
1
X|: 1_[ (E/// L///+mP///+nR///+ S///+L///l )
i=1 \F0 0 2 P 0l

+F1/// Fl///mz _ C{Nn + G/l//n _ mM;// G/// 2 _ ;,/]7 + Hl p— le///p
—H]"p* +mP" —npQ| +nR| + pS|' — E{"iy +3L'iy —mP]"iy —nR]"i;

_pS/// /// 2)] (99)

Pochhammer solutions are of advantage, since the e—expansion can be derived more easily
compared to the case of the product solutions. The contributing powers in i in the above
products determine the degree, d, of the algebraic equations to switch to the associated
Pochhammer form, which is in many cases d = 2 and d = 3 for the functions S; and S, of Egs.
(21)-(23), and various other functions considered in the present paper. In the , F;; case it can
be even of higher order. Here complex solutions will appear in general for the Pochham-
mer symbols. The first index of the Pochhammer symbol will imply a new constant in the
ground field to be used in the summation problem. However, still the solutions remain real.
If the corresponding algebraic equations can be solved in closed form the special conditions
discussed in Appendix B need not to be obeyed.

@ Springer



608 J. Blimlein et al.

In any case, if the degree d of the algebraic equations is too high, in particular, if
the algebraic extensions get too complicated, one can use the general tools developed in
Section 4.1 to derive the e—expansion by introducing generalized versions of harmonic
sums and Hurwitz type sums where the summands have denominators which do not factor
linearly.

4 Computing the expansionine¢

Performing the expansion in the dimensional parameter ¢ on the basis of series representa-
tion around x; in the vicinity of zero, the convergence region of the respective series has to
be known in general. For the one—parameter series we consider the , F; functions, which
converge for |x| < 1 for p < g + 1, [7], which we are going to consider. In the bi—variate
case one has [7]

Fi, F3 o Qx], |yl < 1, (100)
Folx|+ 1yl < 1, (101)
Fy o /Ix|+41yl < L. (102)

In the attachment converg . m we present the corresponding convergence conditions for all
functions up to three variables, as have been given in [20], in computer-readable form, for
the convenience of the user. These conditions are partly very involved. An example is fo6 ¢

1 1
sy Ial< ol < g <1110+ 2y/T2D = IxI(1 + 242D, (103)

[20]. More involved conditions are obtained in the four-variate case. They may be derived
using d’ Alemberts ratio test [83, 149] to these cases.

In general, multi-sums appear with complicated hypergeometric products and one may
try to apply, e.g., the package EvaluateMultiSums [125-128] (utilizing the difference
ring algorithms [63—67, 129-137] available in Sigma) to represent these sums to indefinite
nested sums. In general, this seems not possible. But we will show how this goal can be
accomplished for various interesting cases with our computer algebra tools. In particular, if
the products depend on the dimensional parameter ¢ and one is interested in its e—expansion,
the best tactic is to perform the e—expansion of the innermost summand, given in terms of
hypergeometric products, and to apply afterwards the summation quantifiers to the coeffi-
cients of the expansion; here one has to take care that the interchange of infinite summation
quantifiers and the differential operator w.r.t. € is possible. To accomplish this task, we will
first explain how such products can be expanded in full generality. Afterwards we will focus
on the task to carry out the summations on top of the e—expansion.

4.1 The e¢-expansion of the summand

In general the summand is built by a product of the form
n
[Tre. 0. (104)
i=t

where (e, x) € K(e, x) is a rational function in the variables ¢ and x, or by a linear
combination of power products of such products; for concrete examples see (91) and below.
For simplicity we suppress further summation variables that may arise in # and move them
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to the ground field (e.g., for the variables m, n in (91) we take the rational function field
K = K(m, n) over a field K of characteristic 0).

Before expanding in the dimensional parameter € one may map to Pochhammer symbols.
In such a representation ¢ occurs usually in the form

(a+re),, with reQ. (105)

The series expansion is then given in terms of harmonic sums [68, 69] at argument a and
a+n,witha € C\Z_,

_ Tin+a+re) n _ 20 n
(a+re)y, = Tatro _(a)’l{l+r8|:7a(a+n) Sl(a)+S1(a+n)]+r € [ TP
_ n _ 12 nSi(a +n) l 5

+( 7a(a+n) Sl(a-i-n))Sl(a)-‘r2Sl(a)+7a(a+n) +2<Sl(a+n)

n nSi(a +n)

a(a +n)3 * <a(a +n)? a(a +n)

+S2(a) — S2(a +n))] + ,383[

n

f% (S%(a + 1) + S2(a) — S2(a + n)))&(a) + ( + 1 (a+ n))Sf(a)

2a(a+n) 2
I 5 1 1 nSlz(a +n)
—ESI (d) + <—m + ESZ((J) - §S2(a +l’l)>sl (a +l’l) + m
1 3 nS(a) _ nS>(a +n) B 1 1 4
+6S1(a+n)+2a(a+n) 2@+ n) 3S3(a)-i-353(a-i-n):|}-i-0(a ).
(106)
Here the harmonic sums [68, 69] are defined by
N . k
(sign(b))
SpaN) =Y T S5(), Sy =1, ai.b e N\[0). (107)
k=1 k

Here, a denotes the tuple (aj, ..., a;) for a harmonic sum with / + 1 indices.

Analogous expressions are obtained in the case that the Pochhammer symbols depend on
¢ polynomially. The harmonic sums Sz(a; n) will be called Hurwitz harmonic sums, since
they converge to the Hurwitz ¢-values [150] in the limit n — oo.

These sums are defined by

"1
Si(a; n) = (108)
]; a-+k
= (sign(c))*
ch*(a;n) = 7cSﬂ(a;k). (109)
b k; (a+ k)l ™0

Single Hurwitz harmonic sums are given by
Si(a; n) = S;(a +n) — S;(a), aeC. (110)

Here the harmonic sums are understood as derived from their Mellin transformation,
cf. Ref. [69]. More involved relations of this kind hold also for nested sums. In the course
of further summation in the multivariate case also the Hurwitz generalizations of the sum
having been dealt with in Refs. [70, 151-153] can occur.

If the multiplicands A (e, i) of the arising products (104) do not factorize linearly over
the given field, one has to introduce algebraic extensions, such as given in (95), in order
to obtain the product representations as given in (105). In the case that one wants to avoid
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such non-trivial field extensions (which are often hard to handle with symbolical tools), we
propose the following general and rather flexible method.

Let ¢ be an integer and suppose that f;(e) are functions in ¢ which are nonzero and
complex differentiable around O (and thus infinitely many times complex differentiable)
for all integers i > ¢. By the product rule (and the quotient rule for the second identity) it
follows that

- - - as i
% [ ] fice) = (Hﬁ(8)>z Lo (11
=0 i={ i=¢ fl(g)
n 1 n ] n 88ﬁ(8)
%ll 7 =~ 112
Eﬁ@) (E ﬁ<8>>,§ fi® (12

holds for alln > £.

Since f;(¢e) fori > £ is infinitely many times differentiable around 0, also the summand
3;{"('5) and thus the finite sums in (111) and (112) are infinitely many times differentiable
around 0. E.g., we get

n

0 fi(e) _ N~ i@ fi(6) = (3 £i(0))?
0g E = E .
L) fi©)?

As a consequence, we can apply DY, iteratively on [ [7_, fi(¢) and obtain an explicit expres-
sion F,(g) given by the product []/_, f;(e) itself times a polynomial expression in terms
of sums where the denominator is of the form f;(n)" and the numerator is built by a
linear combination of power products of the form f;(¢)¢0(3f;(¢))¢! ... (3" fi(e))* with
ep+---+e =randey <r.

To calculate e—expansions for such products, we assume from now on in addition that
fi(0) # 0 holds for all i > €. Then

d; fi(e)
fi®) 1.

is well defined and by Taylor’s formula we get the power series expansion

Fr(o) =

n
[]/i®) = Fu(@)&" + Fu1(0)e ! + Fa(0)e“ > + ..
i=¢

with order u > 0 where F,(0) # 0.

Within the package EvaluateMultiSums we specialized this general mechanism to
the product case (104), i.e., we assume that f;(g) = h(e, x) where h(e, x) € K(e,i) is a
rational function in the variables & and x. If 4(0, i) is zero for some i > £, we take £’ > ¢
as the minimal value such that this is not the case and extract the critical part with

[[fi@ =r@[]nreD
i=t

i=t
where r(e) = ]_[f/:_[1 h(e,i) € K(e) is a rational function in . We may assume that
r(e) = & € for an integer s where p, ¢ are coprime polynomials in & with p(0)g(0) # 0.

q(e)
Applying now the above machinery to []'_, h(e, i) leads to a power series expansion of
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order u > 0 as stated above. In addition, we can compute a Laurent series expansion of r in
¢ of order s. Thus by the Cauchy product we end up at the Laurent series expansion
n

[ [ i) = He' + Hyye™ + Hipe™ 4.

i=t
of order = u + s. Here each coefficient H, is given by []7_, h(0, i) times a polynomial
expression in terms of single sums Y ¢_,/ % where a(i) is built by a linear combinations
of power products of the form A (e, i) (dh(e, i))¢' ... (0" h(e, i)’ |¢=0 Witheg+- -+, =
randeg <r.

In order to obtain a nicer output, we factorize the input multiplicand /4 (¢, i) over the fixed
field K and pull over the product sign to each irreducible factor. In addition, we replace
any product ( H?:e’ p(e,i ))_Z with z > 0 to (]—L'-‘:Z/ ﬁ)z with positive exponents z and
use (112) instead of (111). Carrying out the expansions for each product and combining
them by the Cauchy product yield an expression in terms of the input product []i_, £ (0, i)
(or a power product built by the irreducible parts (]_[?:Z, pQ0,1i ))_Z) times a polynomial
expression of sums of the form Z?:z/ % where a(x) € K[x] is a polynomial of degree
less than or equal the degree of the polynomial p(0, x)”.

The following remarks should be stated. First, applying this general method to (a +
re), = HLI p(e,i) with p(e, x) = (=1 + a + er + x) we rediscover precisely the e—
expansion given in (106). Second, the polynomial p(0, i) may be reducible and thus the
denominators in the sums can be split further. In this case the routines of the package
EvaluateMultiSums (using the summation tools of Sigma) split the sums automati-
cally further. E.g., calling the command SeriesForProduct [SigmaProduct [2¢ +
2 + &i + 3i% + 68i% + i3 + &i3, {i,1,n}1,{e,0,2},{n}] of EvaluateMultiSums
yields the e—expansion

n 80
[Thte.i = n!3{7(1 +m)PQ+n)
i=1
1
+ 5+ m)(n( =6 = 30 +n%) +3(1 + M+ 1)Si ()
2
—F%(<n(498—k597n—%185n2——9n3—kn4)4—6(14—n)(—-2——9n——4n2—%n3)Sﬁn)
—WU+nﬂ@+®&@fflm0+nﬁQ+M&m0}+0@%

for the irreducible polynomial & (g, x) = 2¢ + 2x +ex + 3x2 4+ 6ex2 4+ x3+exd e Qle, x]
which factorizes linearly to 2(0, x) = x(x + 1)(x 4+ 2) when it is evaluated at ¢ = 0.

However, for a generic irreducible polynomial p(e, x), also p(0, x) is irreducible. For
instance, consider the product expression

Feum) [T-,(2—e+ B —C—3i—Bji +i?)
e, n) =
nl(Ay —4e),

where f(0,n) equals to the product given in (71). Then applying the command
SeriesForProduct to this expression gives

) (113)

[T_, 2+ B — C —3i — Bji +i?)

fle.n) = TAD,

0, .l n - 1 2
<+ e (M sl<A)+s1<A+n)+i_Zlm)} +0@). (114)
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612 J. Blimlein et al.

If necessary or appropriate, depending on the application, the found sum solutions (and the
products) can be factorized further (within an appropriate algebraic field extension).

4.2 Symbolic summation

We consider now multi—sums over such products (e.g., a single sum over the discrete param-
eter n, or sums over further discrete parameters that appear in other products or even inside
of products). Applying the package EvaluateMultiSum one can now try to work from
the inner sum towards the outermost sum and to transform the definite sums stepwise to
indefinite nested versions. Internally, one computes stepwise recurrences and tries to solve
these recurrences within the class of indefinite nested sums; for details see [62]. In the case
that a sum has an infinite upper bound, one first considers a truncated version with the upper
bound N, applies the symbolic summation tools to this version and performs afterwards the
limit N — oo using procedures available in the package HarmonicSums [68-70, 151—
163]. Since in our application also the formal parameters x; are involved, it may turn out
in the course of the summation that the summation problem cannot be solved for certain
classes of cases, while it is possible in others. In particular, if the & parameter appears in
the innermost summand, it is of great advantage to first expand in ¢ and to apply afterwards
the summation tools to the coefficients of the expansion which are free of ¢. To carry out
the infinite sums after the e—expansion, the infinite power series have to be considered in
their convergence region around zero to perform the infinite sums, see converg.m for the
cases up to three variables.

For instance, we take the summand in (113) and specialize it further to A — 3, B —
—2, C — —1. Then with the expansion (114) we obtain

1—i )
Zn’_l(H ) Gy+eGr+ 0,

n!(3 — 4e),
with
]_[l,I(I —i+i?
Go = Z n1(3)n
[T, —i+i% 4 4
Gi = Z e (- 6+ﬁ+T+4sl<’”+Zﬁ)

Given this expansion, we apply our summation tools to the e-free sums in the second step.
For Gy we consider first the truncated version and get the simplification

Z [ —it+i® _ G+N)(1+N+N) [T, (1—i+4?)

n!(3), 3 N!'3)n
Finally, we perform N — oo yielding
2cosh(¥3%)
0= —F_
3n

The sum G is more complicated and the command EvaluateMultiSum [G]] produces
the output

8§ 8C 20cosh(¥3T) 2cosh(¥3"

o0
) 1
Gl=—-4—— ,
! 373 o + 3 gl—i-l—iz
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with the extra constant
> [ 3 R
C= —cosh| — |- —[Ja-1+?). 115
3 (seeon [ - e o -1 "

As will be shown by non—trivial considerations in Appendix E this convergent sum can be

simplified to
2cosh [ Y37 | {9 [w (4 + )| + e
cC =1+ ) (116)
b

with yr the Euler—Mascheroni constant and v (x) the digamma function.

If this transformation works successfully (in particular, if the recurrences arising within
the course of the transformation can be fully solved within the class of indefinite nested
sums defined over hypergeometric products), one obtains finally an expression in terms of
special functions f(xy, ..., x,), which are the results of the e—expansion of the respective
higher transcendental function. In this process one tries to keep the parameters symbolically
and one finally inserts the respective function of the parameters of the original differential
equations. This will in general lead to representations in radicals. For numerical representa-
tions this is not problematic, while the analytic representations are involved. Calculating the
respective amplitudes for off—shell invariants one may use these quantities in principle in
higher loop diagrams by observing the respective kinematics. Whether this will be a practi-
cal method compared to the direct calculation of the higher loop diagrams has to be seen in
the respective cases.

Summarizing, the e—expansion leads to (multiple) infinite sums which can be simplified
further by symbolic summation in many non-trivial applications. These are functions of
the corresponding set of variables, either in terms of functions which also appear in other
quantum field—theoretic calculations [70, 151, 152, 163] or higher transcendental functions.
Frequently the different letters appear within root—valued expressions.

In the examples that we will present in Section 5 below or in the Mathematica
notebooks attached one obtains e.g. the following sums

oo (3 )
51 = Zyl.(;)' (117)

00 x2(3) -
S2:Zx (2);2)’3] (118)

and much more complicated structures and variables, as shown in the attachment in several
examples. The above sums evaluate to

1 B!
51 = —2+2ﬁ —21In _5(1 +\/ﬁ)] (119
- _ y B 1 3 y |: t h<;>
$2 = (1—x)(x2—y) (1—=x232 (1-x232/T—y arctan =
ST\
+arctanh | ——— | |. 120
arctan (m)— ( )

In general one has to introduce integral representations successively as has been described
in Ref. [152] in detail.
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5 The full machinery
In the following we consider bi—variate examples starting from their partial differential
equation down to their infinite sum representation and e—expansion to illustrate the principle
formalism.
5.1 Example 1
Consider for example the system of equations
2 7 2
(x — Dyd2, + [x(Zs + 5) et 1]ax + (x — Dxd?

+y(Q2e + 1), + %(25 +1)|f(x,y) =0, (121)

|:x(y — 1)O2, + x(4 — £)d, + [y(g - e) e 1]ay

3(4—9)]
2

+(y — Dyd? + flay) =0, (122)

for which we search for a solution of the form (53) with » = 2 where x; = x and x; = y.
Computing a first-order recurrence system of A(ny, np2) = A(m,n) and solving it by the
method presented in Section 3.1 provides the solution

00 o0 3
xmyn 2)m n(4_8)n(1 +25)m
feen= Y Ammn= ) (fn)!n?f(_lﬂ)mﬂ : (123)
m,n=0 m,n=0

A series expansion of the summand A (m, n) in (123) up to OEY) gives

lxmyn(3+n)!(%)m+n 1 |: 1
A(m,n) = —— + = -
6 nl(—2+m-+n)e 36 14+nQ2+n@B+n)(m+n)(—1+m-+n)

x (=36 —30n + 17n* + 970 + 79n* + 17n° + m*(36 + 115n + 84n* + 17n°)

+m (36 + 89n + 218n* + 163n° + 34n*)) — 128 (m) + 651 (n) + 651 (m + n)]

2"y G A m(3),4,
i atmny O (124)

A series expansion of (123) in the region 0 < x < \/y,0 <y < %

1
flx,y) = gf—l(x, V) + folx,y) + O(e) (125)
is possible using EvaluateMultiSum and results in an expression involving the sums
o' (3); !
Ry = 2 14— 126
0 ; il RTINS Y R
oo Li(3
_ Yy (i)i _ 1
R _Z - _—1+m 127)
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at O(e 1. In the following we present explicitly the functions f_{(x, y) and fo(x, y). The
function f_;(x, y) reads

15x6 15y3

) = T A= B = (= )P
—xy?(576 + 176y — 64y* + 5y°) + x3( = 320 + 120y — 36y% + 5y%)
+3x2y(240 + 8y — 22y% + 5y%)]. (128)

[ (160 + 80y — 10y* + y*)

In addition, one encounters at O (s°) the sums

v Y6 _ o
R, = ; m =—1+ ﬁ arcsin (‘/;) (129)
= yl(j)i
R; = ; il?! =—-2+2InQ) +2m —2H_1(/1—-y) (130)
=13, 1 1 Hk)
mzz1 o lle%:i(lix)m (131)
= Ip=
ad % l d yo "l2'
Rs = Z 1! ] 3
i1=1 ir=1 2
_ y _ [ +5 y [im — Ho(T—y ~VT—x)
1= —-x) A=-x)32 -2 T—y
—2H,1(\/1— )+Ho(y)+H0(\/1—y+«/1—x)] (132)
R = Z ” Z v !
i1=1 ir=1 2)12
_ 1/ dt|: e [ ! [4E(x —1x) — 2[1 — (1 — Dx]K (x — 1x)]
) a(=1+t4+yLd - (1-0nx)?
4E(xy) +2(=1+xy)K (xy)
- — 1
(= 1+J€y)2 }«/f] (139
>, Xy ((3), y ’212' / 1
Ry = ’ =— K(x(1—1)) — K(xy)|(134)
7 “2::1( )(+2112[221 f(t-i-y—l)[ X x}’]
S G haty T H(To VT | HA (V)
Ry = ilX:: (1 +2”) Z] =2 = — (135)
00 il l —ini ) i in gi
Ry = Z L Z Y 12 l(z,)z)
i1=1 ir=1 2)12 12=1 2

T —ly)5/2 [ ((1 —lx)3/2 N 1) (a=y"2-1) ( T=yy(Ha(VT=)

[e°]

Ho(y) 1
B 2y * 2) )]+l;{n(1y)2ﬁr(1+:1) r2+i)
SHW) + B (V=) P

4yt 1+i1[1_ 11— im
><|:xy y+ yy<2 )

+i1)
1
(=14 y) /7 =7y (1 +i1)

5 1
><l"(5+i1)2F1(—5,1+i1;2+i1;y):| -
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. 3 1 5 1
x[200T (5 +in)2Fi( = 5.1+ i 24 i y) oy (L2 40: 5 +in: ;)]

1
T (=1 + 0T —my(3+2i1)

[2vaaly™ T (= 14 (1 = )P

5 1
xzﬁﬁ(LZ—%h:E-%h;;)(1+i0]} (136)
2 V1(3);, i) 3 HI)
Ry = — = -3In(2 =
’ 2 it " TE P ay
H,I(«/l—y) 1

as well as the combination

o0

yll y 24,
Ry = (1-(1-x)"?
Z +211 Z )l2

l|=1 ’_1
00 —iaj : i
~(1=9" Xzz 1+211 (Zy 2><Z (2)>
_ i{[z 2«/1—x+2x«/1—x—3xF1<5 L2y, 1) (1 =) limy

l

l '
12 ir=1 2
2’2

F2T=3 o) + 2 (VT3]
) x1+i1(1 _x)3/21"(l+l‘l)
- Z[ V(1 +i12)

11:1

5
><2F1<1,§+i1;2+i1;x>]. (138)

1
Vi=y

51
2F1(1,2+11;*—|—l1;*)
2 y

The harmonic polylogarithms [163] are defined by
X
Hp(x) = / dyfy(WHz(y), Hp=1, b,a;i €{0,—1,1}, (139)
0
with
1 R
fox) =—, faa(x) = . i) = 5 (140)

One can further employ the relations

33 2(z—1)K(z) +4E(2)
Fi(55i102) = TG 1) (141)
! 1 T 11
K(z) = dt = —Fi(=,=; 1,z 142
(2) /0 =P 52 1(2 3 Z) (142)
W=z b 11
E(Z) = /0 ﬁdl: EZF] <_§» 5, ],Z). (]43)
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The function fo(x, y) reads

5Ri0y?
16(1 — y)*(x — y)*
43 (= 320+ 120y — 36> + 5°) + 3x7 (240 + 8y — 22y + 5y3)}

folx,y) = [y3(160 + 80y — 10y? + y*) — xy?(576 + 176y — 64y* + 5y%)

B 15Rgy?

32(1 — y)b(x — y)*
43 (= 320+ 120y — 36> + 5°) + 3x7 (240 + 8y — 22y + 5y3)}
N 1

128(1 — 0)2(1 — y)Sy(x — y)*
—4240y% + 4110y* — 223y° + 33y5) + 8x6y(4 — 24y + 60y* — 4880y° + 1860y*
—564y° 4 79y%) + x>y ( — 832 + 2752y — 1920”4 76160y> + 69280y* — 8772y°
+2427y5 — 495y7) — xy* (512 — 4544y + 3264y% — 34480y° + 4240y* + 3363y°
—141y5 + 66y7) + x®y*( — 512 + 384y + 11008y? + 83680y> + 169980y* + 6287y°
+5931y5 +747y" — 305y%) + x?y* (768 — 4736y — 2272y — 84288y> — 56570y*
+11627y° — 3549y° + 387y + 33y%) + x*y (128 + 1984y — 9792y* — 29440y°
—180320y* — 63768y + 10536y — 8583y” +2055y%))
~ 1

128(1 — x)2(1 — y)’y(x — y)°
+4480y° — 270y* + 33y°) + 2xy° (320 + 10944y — 4016y” + 4664y° + 1749y*

—101y° 4 33y°%) + xOy( — 448 + 1920y — 12800y” + 5440y> + 1920y* — 628y° + 65°)
—x2y*(1280 + 38080y + 20128y% — 6304y° + 18546y — 4204y + 406y° + 33y7)
+2x3y3 (640 + 15040y + 32080y — 9896y + 11559y* — 3791y° — 491y + 169y7)
—5x*y? (128 4 1856y + 11712y% + 1856y° — 2076y* + 1727y° — 2058y° + 448y7)

[y3(160 +80y — 10y + %) — xy?(576 + 176y — 64y> + 55°)

(—960x"(—1 + )7 + ¥ (128 — 1344y + 1536y>

+R1[ [960x7(—1 + )5 — ¥%(128 + 4800y — 4640y*

+2x7y(64 + 320y + 8000y + 15360y — 12080y* + 5164y — 4170y° + 935y7)}
15R5x%(1 — y)? 1
T3 —5x>2(y<x —y)y>4] " R(’[ 16(1 —)2(1 — 9Oy (x — y)°
+y6( = 32 + 384y + 29882 + 140y° — 15y%) + 5xy°(32 — 352y — 2676y — 1772y*
—95y* + 12y°%) + 5x%y*( — 64 + 608y + 46882 + 7516y> + 1723y* + 100y — 18y)
+x5y(20 — 624y + 3324y + 8040y> + 18380y* — 6720y° + 2164y5 — 329y7)
+5x3y%(64 — 448y — 4056y — 12396y — 6809y* — 612y — 10y + 12y7)
—5x*y?(32 — 64y — 1888y% — 9120y — 11664y* — 1436y° — 158y° +40y7 + 3y%)
+x7y(32 + 416y — 2848y* — 12000y — 46800y* — 11880y° + 430y — 200y” + 85)%)

[7120x8(71 +y)

+x7( = 60 + 304y — 444y% — 360y — 2780y* — 1080y° + 1536y — 701y” + 120y8)]

15R3x° 15R1x0(1 — y) ] 15Rgx%(1 — y)?
41 =x)2@x = 200 =x)2yx=—p*] 201 =x)2yx —y*
15Rsx0(1 — y)(—1 4+ 2+ x)y) 15R3x® 15Ryx%(1 — y)
41— x)2y(x — y)* 41 —x)2(x —y* 40 —x)2y(x — p)*
15R4x0(1 — y) 15R7x0(1 — y) 15R11x%(1 — y)

20—y M0G0 2y — A=) 149

@ Springer



618 J. Blimlein et al.

5.2 Example 2

Consider for example the system of equations

l4+e+Q—x+8e)d +2x(1+x)32 =0 (145)
2—e+(1—2y+26)dy +y(3+y)d; =0. (146)
We can write its solution as
Fx,y) = Z A(m, n)x™y" (147)
x,y>0
with 5 5
m . . n . .
—6—ec+7i1 —2 —6+ ¢+ 50 —
A(m,n):(l_[ +.l1. l])l—[ + +ll.l!. (148)
i=1 (5—|—211)11 =1 (—2+28+311)11

The quantity A(m, n) can also be expressed as

V(== IT8), (U= 3+ VT=8),

A(m,n) =
(1+5), T+m)
LI BT, (3 VTER),
(3+%),0a+n
and F(x, y) can be rewritten as
Fery = (X x" fim o) (X" fatn.e)). (150)
m>0 n>0
= Fi(x,e)F2(y, ). (151)

Expanding F; and F> in a series in ¢ using EvaluateMultiSums, one can write an
expression containing infinite (nested) sums. These are rewritten as iterated integrals follow-
ing [152]. Two of the sums are written in semi-analytic form as definite integrals by writing
part of the summand as the Mellin transform of a function. For example, we encounter the

sum o
> (=Dix( - 2+’) (Zj 11+21)S1(’)

- Z ii! (152)

i=1
By isolating the term i = 1 and applying the Legendre duplication formula

1N '(2z)
r@+5)_¢?ﬁ;$aj (153)
and the identity |
ram::§<;>r@nxz+1) (154)

we write
B _7x\/> Z )l+12 2lfxl+l(2[) +oo (— 1)]+t2 QIfX1+l(2I)Z; 11—6-12]
- A +)33+2i) (1+i)3
(_1)1+12—2iﬁx1+i(Zii)Sl(i)
P (1 + )23 +2i)
+i< D2 ) (Sl 1) $16).
(141i)?

i=1

(155)
i=1
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The first three sums are treated following [152]. The fourth sum can be written as

B 00 (- 1)1+12 thxl+t(2z)(zz] 11+21)S1(1)

B ; (14i)?

_ S D) ! VT
= ; a7 /Odz{(z _l)m[_zJ“Z”(Hﬁ)G(l—r’Z)

+24/z(1 - 1n(2))]}

- /Oldz{ﬁ[—Z—i-Zz—i-(l-i-ﬁ)G(l

00 (_1+Zi)(_l)1+i272iﬁxl+i(2ii)
2 (1+0)? }

‘_ﬁr ; z) +2yz(1 - ln(2)):|

X
i=1
1

- /0 dz{ﬁ[—2+2z+(l+ﬁ)G< - ;Z)+2ﬁ(1—ln(2))][—g[—l+z

TR =T x4 2t (50 +6T50)) - o (14T ) Jva] | ase

The & expansion of Fi(x, ¢) and F>(x, ) then can be written by

Fi(x,e) = 1—%+s{—1+«/1+x+%x(—9+4\/1+x)+%(—2+x)H0(x)
1
+%(2—x)G3(x)} +s2{§[20(— 1 VTHx) (= 334 4x + 20VT+ )]

1 1 G G G 2
(=24 ) (=3 How)” + 3 Ho,-1(0) + ‘;(x) - 1i(x) + Séx) )

1 1 1 32
+§(2 —x)(Gs(x) + Go(x)) + 1(74 + 13x)Hp(x) + 5(1 +x)7 H_1(x)

+[1 - 1% + l<72 +x)H0(x)}G3(x) + [1(1 +x)3? 4 1(2 - x)HO(x)}GS(x)}

+& {Gsl(;c) [ (17— 4v/T+x) — (3+«/7)]+G|1(x)[ (x(13 - 6+/T+x)

—6v/T+x) + é(—Z-l—x)Ho(x)} + Glz(x)|:§[2(6+«/1 Fx) +2( = 17+ 2VT+75)]

105x
8

+%(—2 + x)Ho(x):| + G3(x)|:g - + %(—14 + 17x)Hp(x) + %(2 - x)Ho(x)2:|

1 1 G G
+Gs(x) [(—2 +) (—1—6H0<x>2 g Ho100 + 36u@) _ ﬂ)

8 8
+£ [—6x “22 4+ (140G + 1601 +x] +1 [x(—ls +6VT+ )

+6v/T+ ]Ho<x)~(1+x>3/2H 1(x>}+( 2+0(3; Ho(x)3*%Hoo 1(x)
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1 Gig(x)  5G(x)  3G(x)  Gaulx) 3Gnx)  Ga(x)
B e L T
1 1

*ﬂG 507 + E(Z*X)(Gm(x)+G15(X)+G16(X)+G17(x))

1 1
+%{ 60(—2+x)/0 dz{ Ciro: 1+ 2 f[ 2422+ (1+2)Gi(2)

—2Z(—1 + ln(2))][—l +z—VT+xz+VT+az+ zHo(%(l +VT+7))
,H()(%(l wm))]} + 180x/0]dz{fﬁﬁx(f 1 +m[4

+22[ -8+ 222 = 3VZ(2 + ) + 2(6 — 41n(2)) + 81n@)| + 4Ho(2)

+4H) (2) + 2[—3 — 47 +32+ 27 + (1 + ) Ho(2) + (=1 + D Hi () + 2In(2)
-2z ln(2)]Gl(z) + (=14 2)G1(2)* = 2(=1+2)Ge(2) = 2(=1 +2)G7(2) + 64“2”
+[x[—2215 + 4x (435 + 96x — S005/T+x) + 60vT +
+2060( — 1 ++/1 +x)]\/z?}i + E(—12 + 35x)Ho(x) + l(14 — 17x) Ho(x)?
JT 8 8
+%(11 —16x)(1 + x)>?H_; (x) + E(1 + )2 H_ (0)? + l[;:(17 —2J/T+x
26+ VTH ) [Ho 100+ 8VFG10(0) + 843G + 22

17x

[2(17 4x)f—8st(x)]G4(x)+2( 9 4+ 4x)/xGa(x) + [Z -

+§(—2 + x)Ho(X)] Gg(x) + [—5(—1 +x) + 5(—2 + X)HO(X)] G9(X)}

+0(Y), (157)

1 2 1 2 3 4
F(y,e) =1-2y— 7(720+y)y8+£ 7ﬁy(4807765y —56y° + 64y + 12y%)

1
+- ( 9+4y)y2/3(3+})4/3G26(y)+(1—Zy)Gg()(y)}—&-s {Ty(3840 21453y

—1672y% + 1638y° + 280y* — 6y°) + Gzﬁ(y)[ (243 — 108y +2y?)y*3 (3 + y)*/3
1
+2O =4y PG+ Y Ho) + 6 (=9 + 4y 3+ 0P H 3(y)

7 2
+7( 1215 + 108y + 4y%)y*3 Gaa(y) + 51+ 206G () + S (=1 +2)Gs(y)

270
1
—§<—1+2y>czg<y>] (- 1215+108y+4y[ Gy (y) - %yzﬁGs%(}’)
7G 2G 2
1 2y)<—# + %) + [(5 %)cm) + —( 1+ ZY)Gzz(y):Ist

1 1
o5 (= 524204y = 53%)Gao () + £ (=9 + 40y B+ 1) G ()

1 2
—c BN+ Ay 3+ yGnm) - S (-1 + 2y)636(y)} +O(eh.
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By multiplying Fj(x) and F,(y) one obtains the series expansion of F(x, y), with 0 <
x < 1,0 <y < 1. The functions G; are the iterated integrals of the type [152]

with

Gi(z) =

G2(x) =

G3(x) =

Ga(x) =

Gs(x) =

Ge(z) =

G1(2) =

Gg(x) =

Go(x) =

Gio(x) =

G(f1(D), .. fu(x); x) = /0 dyfi(y)G(f2(T), ..., fn(T); ), (159)
JT
G(75502) = =22+ Hi(VE) + Ha (VA), (160)
G(vl-l—r;x):—%-i-z 13+x+§x«/l+x, (161)
G( I:—r;x):—2+21n(2)—i7‘r+2\/1+ — H/(VT+2)

—H_1(V/1+x), (162)
G(V/T 1+r;x):i\/x(l—i-x)-‘r%xw/x(l-l—x)—iln(ﬁ—i—x/l—}—x), (163)
G(l—«/l—l-r

- ;x):2—21n(2)—2\/1+x+2H,1( 1+x), (164)

1
G(I{i’ - ,;Z) = —4v/2 = 2VZHI(2) + Hi (V2) Hi(2) + H-1 (V2) Hi (2)

P2 (V3) — HoA (VD (VE) — 3 HR W) 4 2H 1 (V3) + 5124 (V)

2
+2H_1,1(v/72), ’ (165)
6( lff, %; 2) = 4vZ = 2VZHo(2) + H-1 (VE) Ho(@) + Ho(2) Hi (v7)
—2Ho,1(v/z) — 2Ho,-1(V2). (166)
G(‘/IT? %; x) — 44 2im — 2%2 — 4T Fx —4In(2) — 2iw In(2)

+21n%(2) + 2T+ xHo(x) — H_1 (VT + x) Ho(x) + 2H; (VT + x)
~HoC) Hy (V%) — Hoy (VIF ) Hy (VT ) = S (VT )

1
+2H_1(«/1+x)+§HEI(\/1+x)+2H_1,1(~/1+x), (167)
Vitr 1\ 72 2H_(x)
G( - ,m,x)_4—7—4\/1+ —Ho0H (VI+x)+ —
2xH_1(x)

+———"— H_1()H-_1(v1+x) =2Ho.1(— V1 +x) + 2Ho 1 (VT + x), (168)
Vi+x
G(«/?vl +71, %;x) = 4]—8{6\/)?«/1 +x— 122021+ x
T

—6Hy(vx +~/1+x) — 12H_1(x)Ho(vx + V1 + x)
+24H (V5 + VTH %)) Ho(Va + T+ ) = 12H3 (V5 + VT + )
12T F 2 Ho (x) + 24321+ xHoy (x) — 12H0,_1((\/}+ V1 +x)2>

+6§2}, (169)

@ Springer



622 J. Blimlein et al.

1—4/1 1 2
GiLx) = 6(7“ = x) = —4—2im+ % +4/TFx+41I02) +2irrln(2)

—21n%(2) — 2v/T+ x Ho(x) + Ho(—x) Ho(x) + H—1 (+/1 + x) Ho(x) — 7H0( x)
—2H(vV1+x) + H &) H (V1 +x) + Ho (V1 +x)H (V1 +x)
+%H12(«/1 +x) —2H_1 (V1 +x) - %HE (V1+x)—2H_11(VT+x), (170)

o o= L

+H_1(x) Hy(—=x) + Ho(—x)H1(=x) + H_1 () Hi (V1 + x) = 2v/ 1 + xH_1 (x)
+H_j(x)H_1 (V1 +x) + & — Ho,1(—x) — 2Hy 1 (V1 + x)
—2Hp —1(vV1+x), (171

Gialx) = G(l ItT aise x) 0[ 404/x — 202372 — 8x5% 4+ 15/x(1 + x)

=44 ? +4vVT 4 x4+ H_1(x)Ho(1)

+10xy/x(1 +x)] + [g(l +4v1+x) - %Hl (Vx++1+x)

+%H1((«/E+ VEBRE %H_l(\/Jﬂ Vi +x)]Ho(ﬁ+ V1)

1 1
+ 7 HO (Vi + VT +x) = S0+ Ho o (Vi + VT+x), (172)

V1 11 4132 472 5ixn3
Gux) = G( +T,7,7;x):—8+ U@ i+ T @)@+ in
T T T 3 3 6

1 3 2
+3In@)(24 + 12im —72) + 8T+ x + [ i@ + = —4vT+x

=2(=1+im)H (V14 x) - %le(«/l +x)+2H_ (V1 +x)]Ho(x)
. 1 2 . 37'[2
+[—m +VTFx = S (V1 +x)]H0(x) + [—4—zln(2)n + =

+2H 11 (V1 +x)]H1(«/1 +x)+ (1 —im)HE (V1 +x) - éHf(\/l +x)

. 3r2 . | BN
+ 74+tln(2)nfT+[2+21n7H1(«/1+x)]Ho(x)fEH0(x)
+2(1+in)H1(«/1+x)—%le(«/l-i-x)]H,l( 1+x)+[—1—in+%H0(x)

+%H1 (V1 +x)]HE,(«/1 +x) - éHil(«/l +x) —4H_11(V1+x)

—2H_ 11 (VT+x) = 2H_1 11 (vVT+x) +2¢3, (173)

(‘/l;ﬁi % x) =8(= 1+ V1) = B2 (VT + ) Ho(VT+7)
~8VTHxH-1 (= 1+ VT40) + [4(1+ VT+2) Ho(vTFx) +2Ho1 (VT +3)
—;2}H_1(m) +4(— 1+ VT+x)Hy 1(—1+VT+x)

—4(1 4+ T+ x)Ho—1 (V1 +x) +2Hoo—1(— 1 +~T+x) —2Ho 1,1 (VT +x)
+2Ho, 2, 1( = 14+ VT+x) =2H 20 1(— 1+ V1+x) +2(1 + VI +x)22

1
46 (7

Gis(x) =
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Glé(m:G(N/]:—t'lif’%. )_3(71+«/ X)—4n@)(—1+vT+x)

Gi7(x)

Gig(x)

Gio(x)

Goo(x)

[ 4= 1+ VTFR) + 2Ho 1 (= 1+ VTH2) [Ho(— 14+ VTH7)
+H4m@VTHFx + 4T+ xHo(— 1+ VTFx) [Hoa (14 VT+3)

~4(1+ VTH X Hoa (= 1+ VT Hx) + [2102) = 4V/T+ x| Ho1 (— 1+ VT+3)
+4V/T+xH_ (= 1+ VT+x) = 2In@)H_o_1( =1+ 1 +x)

—4Hpo—1(—1++v1T+x)+2Ho—1,—2(— 1+ +1+x)
—2H 5 10(—14+V1+x)—2H 5 1 »(—1++V1+x), (175)

G(V”’ ! ! >_8(—1+«/7)—8\/7H (= 1+4/T+7x)

T 1+’ 1+r
+4VT+xH> (= 1+ VT +x) +4Hy—1—1(— 1+ /1 +x)
—4H 5 11 (= 1+ v/1+x), (176)
1—4/1 11 4132
G( +r’7’7 )_8— n’(2)
T T 3

T

5im3
6
+In2)(— 8 —4im +25) —8V/1T+x + [i In@)7w +4v1+x +2(—1+in)H (V1 +x)

+%H12(«/1 Fx) = 2H 11 (VT Fx) — 9§2]H0(x) + [E ~T¥x+ %Hg(fx)

+22Q2Q)2 + im) + 4im —

+%H1 (Vi +x)]H0 ) — ]Ho ) + [4+11n(2)n —2H (VT +%)

—9§2]H1 (VIF2) + (=1 +imHE(VT+x) + 6Hf( T+x)+ [4—i1n(2)7r

+%H§(x) =201 +im)H (V1 +x) + %le(«/l +x)+90 + Ho(x)[ -2 -=2ix
1
+H (V1 +x)HH,1(«/1 +x) + [1 +im = 2 Ho(x)

*%Hl(\/l +x)]HEI(¢1 +x) + éHil(«/l +x) +4H_1 1 (V1+x)

+2H_ 111 «/1+x)+2H,1’,1v1(«/1+x)78{272{3, (177)
(I_VHTI ! )——8(—1+J7)+8J7H_(—1+M)

T Tt
—4(=1+V1+x)Ho—1(-1+v1+ 41+ vVT+x)Ho (- 1++/1+x)
—2Hpo-1(—1++/1+ )—2H0,72,71(—1+«/ x)+2H 20 -1(—14+~1+x)
+2H 5 2 —1(—= 1+ ~14x) + Hopo-1(x), (178)

1—-V1i+r1 1 1
G<f e )_4( 24+ @)(—1+vI+x)

+[4(—1+«/7x)—2H0,,1(—1+M)]H0(—1+m)
+[—41m2)«/ﬁ—4«/ﬁﬂo(—1+ﬁ)]ﬁ_1(_1+m)
+4(1+ VT +x)Hoo( = 1+ VT +x) + Ho(x)Ho, -1 (x)

+[ = 2@ + 4VTH3]Ho1 (= 1+ VT+3) = 4V/THxH g (= 1+ VT+)

+2In()H-2,—1(— 1+ ~T+x) = 2Ho0,-1(x) +4Ho0,—1(— 1 + V1 +x)
—2Ho—1,2( =1+ V1+x)+2H 5 1 0(—1++v1+x)
+2H 5 12— 1+ V1 +x), (179)
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624 J. Blimlein et al.
1-Vitr 1 1
G2|(x)=G( : ,1+t,l+t,x>=—8(—l+«/1+x)+[4«/l+x
~2H01 (VT + ) = 2Ho 1 (VT +2) [Ho 0 + [ = VT
1 1
+5H1(\/1+x)+EH_I(\/l+x)}H_1(x)2+4H0,0,1( 1+x)
+4Ho0,-1 (V1 +x) —7¢3 4+ Ho—1,—1(x), (180)
_ _ 3
Gn(x) = G(1 vitr 1=+ IJ”,l;x) RPN —7i7r—6x+41n(2)[4+2in
T T T 3
—2«/1+x—iﬂ«/l+x+7§2:|+16\/1+x+4in\/1+x+ln2(2)[—8+3in
W +x] + [— 34 5102(2) + In2)(d — 5im) + 2x + [4 ~15in
1 1
-2/1 —i—x]Hl (V1+x)— 7le(~/1 +x) +42§2:|Ho(x) + [5(4— 15im —2/1+x
11 1
~ S MV +x)]H§(x) - S Hi) + [ —7+51%(2) + In2)(4 — Si)
1
+4\/1+x+42§2}H1(«/1+x)+5<4— 15i7t—2«/1+x>H12(«/1+x)
f%HE( T+x +[7979ln2(2)+ln(2)(4+9in)74iﬂ+4\/1+x+[74
+15im — 23/T+x + 13H (V1 +x)]H0(x) + 12—3H02(x) + (— 44 15ix
13
—2«/1+x)H1(«/1+x)+?le(\/l+x)—34{2:|H,1(\/1+x)
1 1 1
+[§(7 15i7 +2VT+) = < Ho(x) = 5 Hi (V1 )| H2 (VT %)
3
+§Hil(«/1+x)+4(—1+\/1+x)H,1,1(\/1+x)—4H,1,,1,1( 1+x)
1
+14§2+8in§2—3x/l+x§2+§§3, (181)
Go(x) = G(li vitr 1-vi+e |1 ;x) — 16+ 161n(2) — 4im — 6x + 1631+ x
T T 1+
+2( =2+ ) Ho(x) — 4H2 | (V1 +x)Ho( — V1 +x)
+2(—2+{2)H1(\/1+x)+|:2(1+x)—4«/1+xH,1(«/1+x)
+2H2 (VT +3) |Ho1 () + [2(— 6+ 562)
+8VTF ¥ Ho( = V/T+x) [Ho (VT %) 4+ 89T+ xHoa (1 +v/T+x)
—8Hoo,1(1 +v1+x)+2in5 — 12V/1+ x84+ 783 (182)
1/3
Guly) = G(%;y) = é{3[—6+31n(3)—2(—1)'/3[—ln(3)
+1n (3= =37G+0") [+ 202 0 [1437R DG + 0
+2In(-3+3*33 + y)1/3)]3‘/3 + 736 +18(3 +y)‘/3}, (183)
G = G(x06+0Vy) = Hayeen —3a[2 22 2 b asy
> ’ 2 3'3°3 3 ’
1 114
_ 1/3 2/3. _ ! 2/3 _ 2/3 SLT. 2 1/3
Gao(y) = G(x'P G+ y) = 2{<2+y)<3+y> 2% 3R 5505 3]}y , (185)
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Go(y) = G((3+T) 133 4 1)%3; ) (186)
Gx(y) = G(r2 G+, f'y), (187)
Gu(y) = G(GB+0)'", %y) (188)
Gaoly) = G(r2 G+0)3, 11833+ 03, ) (189)
Gai(y) = G(rl 33 +1)23, f'y>, (190)
Gn(y) = G(rl 334 1), 3J1r ) (191)
Gu(y) = G(' 3+, (317”1/3 y). (192)
Gu() = G(x'PG + 0, 2/3<3+r>”3 ¥), (193)
Gas() = G 3+1, ; BG4 y), (194)
Gas) = G(+ P+, s B+ y), (195)

5.3 Example 3

Consider as an example the system of two differential equations in two variables implied by
the following differential operators,

—af — x00 — 797 — 5x7y079, — 155797 — 10Bx*9] — 10x*y*0}97 — 5Bx*yoto,
—60x*ydta, — 66x*07 — 268x0) — 10x°y970] — 10Bxy*9]07 — 90x7y*0]0;
—40Bx7yd}0y — 198x7yd} 9, — 96x79] — 188x%97 — 5x2y*079) — 108x>y* 9797
—60x2y?0797 — 60Bx>y* 0797 — 198x7y%0797 — T8Bx> Y07, — 192x°yd7d,
—38x707 — axdy — 2Bxdx + ydx — xy 0:0) — 5Bxy*0 0y — 15xy*0,0;
—40Bxy>0,0; — 66xy° 0, 0; — T8Bxyd, 0} — 96xy>9,0; — 36Bxydyxy — 38xydyy
+ydyy + x97 — 2x9, — By°0) — 108y 0} — 26By°9; — 188y°0; — 2Bydy, (196)

—afi — Bix°3] — X7 y30y — 1081x*0] — 5x*y*9}0) — 51xyaga, — 15xtyatay
—2681°9] — 10x7y0}97 — 10B1x°y?3]0; — 60x°y3707 — 4081x7yd] 9,
—66x7yd; 0y — 18B1x707 — 10x%y*970} — 1081x%y 0795 — 90x°y 970;
—6081x°y*070; — 198x7y*070; — T8B1x°yd; 9y — 96x7yd70y — 2B1x0;

—5xy°0,0) — 5B1xy*0, 0} — 60xy*0,0; — 40B1xy’0,0) — 198xy’ 0, 0]

—78B1xy% 0505 — 192xy% 8,05 — 36B1xydyy + Xy — 38xydyy — y°0 — B1y703
—15y°0) — 1081 y*9; — 66y*0} — 268179, — 96y°0; — 188179, — 38y°0; — aydy
—2B1ydy + ¥y + y3; — 2y, (197)
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Assuming a hypergeometric solution

Foe,y)= Y fommx"y", (198)

m,n>0

the coefficients f(m, n) must obey
(m+ Dy +m+n)fim+1,n) —(B+m) (Of +(m+n) + (m+ n)3) f@m,n) =0, (199)

(4 D+ m+m) fonn+ 1) = B (o + 0n+m)° + m+m)) fom,m) = 0. (200)

Solving these two equations with the help of Sigma, one obtains

Fomn) = (l’_’[ (—1+ﬂl+i1)(—2+a+8i1—'I%if+11if—5i]‘+il5)>
(—1+V+11)11

i1=1

Xﬁ (=1+8+i1)

(—14+n+y+i)i

(—2+48n —13n% + 11n® — 5n* +n° + o + 8iy — 26ni
i1=1

+33n%iy — 2003y + 5n*iy — 13i% + 33ni% — 30n%i% 4+ 10037 + 11i5 — 20ni}

+10n%i} — 5if + Sni} +i7) (201)

This quantity cannot be analytically expressed as a product of Pochhammer symbols due
to the high degree of the polynomials appearing.

6 Partial difference equations with rational coefficients

In a series of problems also partial linear difference equations in various variables with
polynomial coefficients occur, with the target solution space being that of rational func-
tions in several variables, possibly also including harmonic sums or Pochhammer symbols
in the numerator. In various interesting situations, see Section 5, one can derive solutions
iteratively by solving first—order linear recurrences. More generally, one may solve higher-
order linear recurrences using difference ring algorithms [64—67, 164, 165] implemented
in Sigma. However, in the general case of multivariate linear difference equations, there
are only very few algorithms available to find the solution compared to the case of the
univariate difference equations. To support possible future challenges in applications, we
developed a Mathematica implementation of the algorithms of Refs. [138, 139], which
are a multivariate generalization of the algorithm described in Ref. [164, 165]. In addi-
tion, we enhanced these methods by further heuristic techniques that may be useful for
the calculation of Feynman integrals. The basic idea of these algorithms is to constrain
the denominator of the solution. From this, finding the numerator of the solution using an
Ansatz becomes easier. In particular, it only requires the solution of a linear system of equa-
tions. In the following, we give a survey on how to constrain the denominator of the solution
of a partial linear difference equation (PLDE). In Section 6.1, we describe the notation used
and in Section 6.2 we describe the concepts of aperiodic and periodic denominator bounds
given in the literature, and in Section 6.3 we discuss the determination of the numerator of
the solution. In particular, we explain how one can deal with a hypergeometric prefactor in
the solution in Section 6.3.1 and how one can search in addition for solutions in terms nested
sums in Section 6.3.2. After commenting on the problem to combine the solutions using
initial values in Section 6.3.3 we turn in Section 6.3.4 to tools to obtain a Laurent expan-
sion in the dimensional parameter ¢ efficiently by successively solving a set of difference
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equations where the parameter no longer appears in the coefficients. This section is supple-
mented by Appendix D where we describe the commands available in our Mathematica
implementation solvePartiallLDE.

6.1 The basic problem description

With y(ny,...,n,) € K(ny, ..., n,) arational function in r variables, we define the shift
operators Ng with respect to the shift s = (sy,...,s,) € Z" as
Nsy = y(ny +s1,...,0, +5). (202)
Partial linear difference equations are equations of the type
> asNgy = f, (203)
seS
where S is a finite subset of Z", as and f are polynomials in the variables ny, ..., n,, and

y is an unknown rational function to be determined; the set S of all shifts appearing in the
equation is called the shift set or structure set. Because the equation is linear, the general
solution is the sum of a particular solution of (203) and of the homogeneous equation with
f=0.

An example of the type of equation under consideration is:

— (14 k+nH)ym k) + @ +k+2n+n>)y(l+n,2+k) =0. (204)

It has the shift set S = {(0, 0), (1, 2)} and its coefficients are
aop0 = —1+k+ n?), (205)
agp = @+k+2n+n?. (206)

A distinction used in the literature [64—-67, 129-138] is the one between periodic and
aperiodic polynomials. A polynomial p is periodic if there exist infinitely many shifts,
mapping p into p’, such that ged(p, p’) # 1. A polynomial is called aperiodic if it is not
periodic. For example, the polynomial (n+4k42) is periodic, and the polynomial (n2+k+6)
is aperiodic. An important fact is that any polynomial can be factorized into a periodic and
an aperiodic part.

Given a partial linear difference equation, algorithms exist to constrain what denom-
inators may appear in the solution. These algorithms target separately the periodic and
the aperiodic part of the denominator of the solution of (203). In our package we have
implemented and enhanced the algorithms described in [138, 139] and we describe our
implementation choices and their rationale in the following.

6.2 Denominator bounds

Let us first review the reason why the calculation of a denominator bound for the solution of
a PLDE is valuable. One naive way, which one aims to avoid, to search for solutions of (203)
among the space of rational functions would be to start with an Ansatz; for example, one
can naively write a generic rational function in the variables n1, ..., n, with undetermined
coefficients cx and ¢y,

ki
Dk H”i

k i

— . (207)
%: aw [1n;

Y(nl,--.,nr) =
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By plugging the Ansatz (207) into (203), one obtains equations for the unknown coef-
ficients ck and ci’ by imposing the equality of every monomial in the variables n; on both
sides of the equation, and one finds in this way, if they exist, the solutions having numerator
and denominator of degree lower or equal to the degree chosen for the Ansatz. However,
the equations obtained in this way will be, in general, non-linear, and therefore difficult to
solve.

As observed in the univariate case [164, 165] the situation improves if we are able to find
a denominator bound for the solutions. A denominator bound d is a polynomial such that
for any solution y = % of (203) it must be p|d: the denominator of the solution is a divisor
of the denominator bound.

If we were able to calculate d algorithmically, then only an Ansatz for the numerator of
the solution would be required, and the equations for the unknown coefficients cx would be
linear, and therefore easier to solve. It is possible to formulate an Ansatz for the numerator
which also includes terms involving harmonic sums [68, 69], satisfying a wide class of
recurrence equations.

If we write the solution to a partial linear difference equation as y = .= with u aperiodic
and v periodic, it is always possible to calculate a bound d, for the aperiodic part u of the
denominator. We refer to [138] for a description of how the aperiodic denominator bound is
calculated.

For the periodic part v it is not always possible to obtain a complete denominator bound
for a PLDE. This is illustrated for example by the equation

yin+1,k)—ymn, k+1) =0, (208)

which is satisfied by m for any @ € N. Clearly, no polynomial can be a denominator
bound for (208).

In other words, one cannot expect to obtain a complete denominator bound (due to the
intrinsic problem that periodic factors might arise with arbitrary powers). Nevertheless, it is
often possible to calculate a partial bound, and to identify what shape the factors of v, that
cannot be predicted, must have. (A partial bound is a bound for some, but not all, the periodic
factors). The algorithm in [139] works by successively examining the periodic factors u of
the coefficients ap when p is a “corner point”, see [139] for a definition. Applying all the
tactics described in this article, one obtains an explicitly given polynomial d), a finite set of
polynomials P and a set of generators that spans a lattice V in Z" such for any solution of
the given PLDE one can predict the periodic denominator part v as follows:

v | dp * Usemi-known * Vunknown

where Vsemi-known 1 @ polynomial whose factors are take from the set {Ngp™ |s € Z", m € Z}
and Vynknown 18 @ polynomial such that® spread(Vynknown) = V.

If P # {} or V # {}, the implementation will print out the corresponding data in order
to support the user to guess the missing parts Vsemi-known and/or vypknown. Summarizing, the
user will obtain a guidance in formulating an Ansatz d,., for the missing factors in the
denominator of the solution. To force their inclusion in the search when looking for the
numerator of the solution, one can use the option InsertDenFactor — dyser Of our
package, cf. Section 6.3 and Appendix D.

The spread of a polynomial u is closely related to Abramov’s definition of the dispersion [164, 165] and is
defined by spread(u) = {s € Z" | ged(u, Nsu) # 1}.
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6.3 Determination of the numerator

Once the aperiodic and periodic denominator bounds d,, d), are calculated, and possibly
an Ansatz dy.r for missing factors in the denominator has been set, one can search for
the numerator contribution. In general, it has been shown in [166] based on [147] that this
problem is unsolvable: given a homogeneous PLDE with polynomial coefficients, there
does not exist an algorithm that can determine all polynomial solutions. Nevertheless, one
can search for the desired polynomial solutions by taking as an Ansatz a general polynomial
num(c;) with undetermined coefficients ¢; where the polynomial degree is set sufficiently
high. Then one may substitute the rational function

num(c;)

- "7 209
YT dadyduser (209)

into the equation (203). Then finding non-trivial solutions of the the underlying linear
system allows one to specialize the ¢; such that y is a solution of the given PLDE.

In many cases, it is the determination of the ¢; which requires the largest computation
time, whereas the denominator bounds can be computed quite quickly. For this reason we
propose the following strategy to reduce the computation time.

In the cases where the PLDE does not contain any symbolic parameters (such as the
dimensional regulator ¢, or ratios of invariants) other than the shift variables, one may obtain
constraints on the undetermined ¢; simply by plugging, sufficiently many times, random
numerical values for the shift variables. Then one quickly obtains a linear system for the c;.

If there are symbols present, instead, one may consider performing a first pass with
the symbols replaced by random numbers, with the purpose of identifying and removing
redundant constraints. Then, after removing the redundant equations for the c;, the system
can be solved in a stepwise manner, i.e. considering one at a time the constraints produced
by one monomial, and plugging the result in the rest of the equation. This is what our
package does when the function SolvePLDE is called, cf. Appendix D.

It is certainly possible that the use of random numbers to generate constraints can cause
the system to generate two equations for the ¢; which are not independent. The probability
of such an occurrence can be made arbitrarily small by choosing a sufficiently large range
over which the random numbers are chosen. In any event, the consequence of an unfortunate
draw of random numbers can only cause the software to output more functions misidentified
as solutions when in fact they are not; it cannot cause the software to miss any solutions. By
explicitly checking the result, one can guard against this remote possibility, at the expense
of additional computation time.

In the following we elaborate further enhancements in order to extend the solution space
from the rational function case to more general classes of functions. Besides the exam-
ples below, further examples for each aspect can be found in the Mathemat ica notebook
auxiliary to this paper.

6.3.1 Treatment of a hypergeometric prefactor

Given a partial linear difference (203),

> asNsy = f, (210)

seS
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it is possible to derive another difference equation

> aNsy' = f. @1
seS
whose solution y’ is related to y by
¥ =ry 212)
with r = r(n;) a hypergeometric function of its arguments, i.e. a function such that the ratio
Ne,.r:r(n],...,n,--i-l,...nr) 213)
r r(ng,...,nj,...,Ny)

is for all i a rational function of the variables ;. Examples of hypergeometric functions are
Pochhammer symbols, factorials, I'-functions, binomial symbols, and obviously rational
functions and polynomials.

The transformation from (210) to (211) is useful whenever it is possible to formulate an
Ansatz for r. Once some specific form can be postulated for r, the equation (211) is obtained
by substitution and by exploiting the hypergeometric property.

Consider for example the equation

(1 4+ k) (e + k(1 +k+n?) y(n, k) —2kQ2 +k +n*) y(n, 1 +k)
+(1 +k)(8+k)(2+k+2n+n2)y(l+n,k) =0. (214)

We assume that its solution is

y(n, k) = (&) y'(n, k) (215)
with y’ a rational function of n and k and (&), the Pochhammer symbol
@r=¢ce+1)---(e+k—1). (216)

Then one derives a difference equation for y’, namely
(e +O[A+ Kk +n> +kQ@+n?)y (n, k) = 2kQ2 +k +n?)y (n, 1 + k)
+Q+ K +2n+n* + kB +2n+n%)y' (1 +n,k)] =0. 217)

We can now solve the new equation, obtaining

k

"(n, k) = ————. 218

y(n, k) T k2 (218)
From this we conclude that the solution of (214) is
k

k) = —C, 219

y(n, k) (8)k1+k+n2 (219)

for some constant C € K(g).
6.3.2 Finding solutions in terms of nested sums

Solutions connected to Feynman integrals involve often also indefinite nested sums, such as
(cyclotomic) harmonic sums [68—70] or generalized versions, like Hurwitz harmonic sums.
A straightforward modification of the Ansatz (209) is to search for a numerator num(c;)
that is built not only by a polynomial in K[n1, ..., n,] with the unknown coefficients c;
but to search for polynomial expressions of a finite set of nested sums, i.e., one takes a
linear combination of power products in terms of the given nested sums whose coefficients
are polynomials in K[ny, ..., n,] with unknown coefficients. In practice, it is important
for this list of nested sums to be shift-stable, meaning that a shift in any of the variables
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must not introduce new harmonic sums not already included in the list, and they also should
be linearly independent. To guarantee this property, one can use quasi-shuffle algebras or
difference ring methods [63, 167, 168]. The nested sums at shifted arguments can then be
rewritten through the repeated application of identities of the type

1
S +i) ==+ S +i = 1) (220)

and similarly for all other nested sums, until only unshifted nested sums appear. After
clearing denominators, the PLDE implies a set of linear constraints on the undetermined
parameters c;, obtained by coefficient comparison in all the power products which appear
when y is plugged back into the (203). Note that the number of unknowns c¢; increases
strongly: one tries to determine not only one numerator polynomial but numerous polyno-
mials for each power product. In this regard, the homomorphic image techniques described
in the beginning of Section 6.3 are instrumental to perform these calculations in reasonable
time.

This heuristic method provides in many cases the desired solution. For instance, consider
the equation

(—k—1) <k+n2+2n+1)f(n,k)+k(k+n2+2n+2)f(n,k+1)
+2(k+l)(k+n2+4n+4>f(n+l,k)—2k<k+n2+4n+5)f(n+1,k+1)

—(k+1)<k+n2+6n+9)f(n+2,k)+k<k+n2+6n+10)f(n+2,k+1):0.
(221)

Looking for solutions of the form described, with a numerator of degree up to 2, containing
the harmonic sums Sy (n), S1(k), S2,1(n) the algorithm finds the denominator

dp=1+k+2n+n? (222)
and the corresponding numerators of the solutions of the homogeneous equation:
1, k. k> n, kn, Si(k), kSi(k), nS;(k), S1(k)*, kS1(n), kS2,1(n). (223)

Remark. A more advanced (and also less heuristic) tactic is to apply a recursive strategy
as worked out in [64-67]: one defines an order of the nested sums (s, 52, ..., S.) wWhere
a sum s; does not arise inside of any of the sums s, ..., si—_;. Then one makes an Ansatz
for the solution y = pg + p1 e --- + pasd where po, ..., pq are polynomial expressions
in terms of the remaining nested sums s, . . ., S,—1 with coefficients from the ground field
K(ny,...,n,). Here one has to set up d sufficiently high in order to guarantee that the
desired solution can be derived. Then one plugs y into (203), applies the shift rules such
as (220), clears denominators and compares the coefficients of the highest term sf. This
yields a new PLDE in terms of the unknown p;. Now we compute by recursion all the
solutions of this new PLDE in terms of the remaining sums sy, .. ., S.—1, plug the solutions
into p4 of the original system and obtain an updated PLDE of (203) where s, occurs only up
to degree d — 1. Now we proceed by degree reduction to compute the remaining coefficients
Po, -- -, Pd—1 in order to obtain the final solution y. We remark that in the base cases,
i.e., when all sums are removed within the recursion one ends up to solve several PLDEs
purely in the ground field K(ny, ..., n,), i.e., the machinery described in the beginning
of Section 6 is applied. It is our plan in the near future to implement this more advanced
machinery within the formal setting of RITX-difference ring extensions [129-137] based
on the reduction strategy given in [64—67].
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6.3.3 Matching the solution to initial values

If initial values are provided, it is possible to look for a general solution that conforms to
them. This general solution is found by building a linear combination with undetermined
coefficients of the solutions of the homogeneous equation, plus a particular solution of the
equation. Next, the initial values are plugged in, and a system of equations is obtained. In the
case that the system contains symbolic parameters other than the shift variables, the unde-
termined coefficients to be searched for are not just numbers. In that case, the coefficients
of the linear combination are taken to be general rational functions in the parameters up to
some chosen degree. The combination of the solutions will be of particular importance for
the next subsection.

6.3.4 Finding the solution in a series expansion

In many applications it is desirable to obtain the Laurent series expansion of the solution
of a difference equation. This may be easier to achieve than the derivation of a complete
solution, because, at each order in the expansion, it is possible to derive a difference equation
where the expansion parameter is absent, therefore the linear system to find the coefficients
¢; can potentially be solved much more quickly. The procedure, described in the following,
generalizes the univariate case given in [92]. It assumes that the initial values of the solution
in its e—expansion are known.
Consider for instance of (203), possibly containing a parameter ¢ in the coefficients:

Y as(ni, ©)Nsy(ni) = f (i, 8), (224)
seS

where the coefficients ag(n;, €) are polynomials in the shift variables and in the parameter
€. Assume that the solution of (224) has, around ¢ = 0, a Laurent expansion starting from
the power &~ of the parameter, with £ known,

Yeni) = &~ y_p(i) + -+ 4+ yoni) + ey1(n) + - + & ye(mi), (225)
and that the right-hand side of the equation can be expanded in a series in ¢ as
=6 o)+ ) + - (226)

Assume also that the as(n;, ¢ = 0) are not all zero, so that an overall power of ¢, if present
in the equation, has been factored out. Then, one may proceed by inserting (225) and (226)
into (224) and doing a coefficient comparison of the £ ~¢ terms, obtaining

Y as(ni.e = O)Ngy_¢(ni) = f-e(ni). (227)
seS
Equation (227) is now free of ¢, which facilitates the task of finding a solution and reduces
the computational time required. If (227) can be uniquely solved for y_, and the solution
matched to initial values, one can move to the next higher power in & by plugging the
solution into (225). In this new equation one does a coefficient comparison of the next
power in € and solves for y_g1. The process is repeated as many times as needed until all
the terms of interest in the Laurent expansion are obtained.
For instance, consider the equation

[3k+ D+ 1) +4(n + 1) + 1](4kn’e + 5ne + 66> + D) f(n + 1, k + 1)
—@Bkn+4n+ D[4k + D(n + 1)?e + 50 + De + 66> + 1] f(n, k) = 0. (228)
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Together with a list of 25 initial values, our procedure to compute the expansion encounters
atorder 72, ¢!, €0 the equations

(=3kn—4n - 1) f(n, k) + Gkn +3k+Tn+8) f(n+1,k+1) = 1, (229)

with 7 = 0, 5, 0, respectively, which are free of ¢. The series solution of (228) is found to be

1 5n 6
e2(3kn 4+ 4n + 1) + eBkn +4n+1) + 3kn+4n+1

fn, k) = +0(). (230)

7 Conclusions

We reviewed and introduced new techniques, algorithms and implementation choices for
the solution of partial linear differential equations in the form of multivariate power series
representations. Here we extract the underlying partial linear difference equations of the
power series coefficients (see, e.g., Section 2) and try to solve them in terms of special
functions. For this task we presented an algorithm that can solve frequently arsing hypergeo-
metric systems in terms of hypergeometric products (see Section 3) and elaborated heuristic
methods to find such solutions (also in terms of nested sums) for the general higher-order
case (see Section 6). Special care has been put on the e—expansion of such solutions (see
Sections 4.1 and 6.3.4) where in addition, e.g., Hurwitz harmonic sums and generalized ver-
sions may therefore arise. Finally, we utilize the available summation tools in the setting of
difference rings to simplify the found sum solutions in terms of indefinite nested sums over
hypergeometric products. In particular, various concrete examples of this computer algebra
machinery have been elaborated (see Section 5).

Based on IBP methods, the precision calculations in perturbative Quantum Chromo-
dynamics yield huge expressions of Feynman integrals that are specified as solutions of
partial linear differential equations. In this article we generalized the available techniques
that enable one to solve in parts these equations and to provide in a mechanical fashion
representations in terms of multivariate hypergeometric series and their simplifications in
terms of functions given by indefinite nested sums and products. Without these computer
algebra tools (and future refinements and extensions) these challenging calculations would
be out of scope. We strongly feel that these tools in combination with artificial intelligence
may lay the foundation for more flexible and efficient mechanizations and the comput-
erization of knowledge concerning the underlying differential equations and the obtained
solutions. In particular, the classification of the arising differential equations with extra
parameters (together with the found solutions) and new pattern matching techniques might
lead to significant speed-ups for future evaluations of Feynman integrals. Furthermore,
finding solutions of partial linear difference equations is a highly challenging task and
various heuristic methods with user interaction have been introduced. Also here, e.g., the
exploration of machine learning strategies might lead to improved and fully automatized
strategies that lead to a new generation of partial differential equation solvers.

Appendix A: The multiple series representation

In the following we summarize the different multiple series representations that can be
found in the existing literature. We note that starting with their partial linear differential
representation our methods described above can also provide the presented sum representa-
tions. The expansion coefficients are given as rational functions of Pochhammer symbols,
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which requires a corresponding re-parameterization of the coefficients of the foregoing
differential and difference equations.

One of the simplest functions of these classes is Gau3” hypergeometric function (2). Its
generalizations, the generalized hypergeometric functions, are given by (3). The bi—variate
Appell series [8, 9] have the representations (4) and

/ ’ 2 — (a)m—‘rn(b)m(b,)n
Fya;b,bic,c/ix,y) = Y ) = Ty (231)
S m!n!(c)m (cn
o o (@ (@)n (D) ()
Fs(a,a’sb,bicix,y) = Y > XMy (232)
m=0n=0 m!n!(c)m"'_”
Fi(a;b;e,c;x,y) = ZZ (a)m+”(b)m+nxmy". (233)

n! /
m=0n= Omn(c) (C)"

This set is extended to the Horn-type bi—variate series [12, 13]

00 oo o

Gi(a;b,b'; x,y) = rg}};wmﬂ(b)n_m (b’>m_n% (234)

Ga(a,a’;b, b5 x,y) = ii(a)m(a (D) (D) — n% (235)
m=0n=0

Gi(a,d’;x,y) = ii(a)zn—m(a’)zm—n% (236)
m=0n=0

Hi(a; b;c;d; x,y) = g’i (a)m_"((j));"”(c)" )::‘z:l (237)

Ha(a; b;c;die;x,y) = mf%ﬂi:) (a)m_"(:)";(c)"(d)" )::,z:l (238)

Hi(a: bicix,y) = mX%nX(:) (a)(zc")l;i(nb)" fmz! (239)

Hy(a; b c;d; x, y) = W;};} (a()j)”y‘;';l()i)" f:,z 7 (240)

Hs(a; b;cix,y) = 22 (a)zmz)(nb)"_m )::,ZT (241)

He(a; by c;x,y) = ii(a)Zm—n(b)n—m(c)n% (242)
m=0n=

Hy(a: b c; d; x, y) = 22 (a)z’"zgi)”(c)” f:‘z:l (243)

As in the case of the generalized hypergeometric functions there are confluent forms of the
bi—variate functions.
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There are also the further bi—variate series [18, 19]

Si(a,d’,b;c,d;x,y)

Sy(a,a’,b,b;c;x,y)

3§

m=0n=0

(@ mtn (a/)m+n D) x™Y"

©min(d)m — mn!’ (244)
(@m—n (@) (B)n (B ) X™ " (245)
(m—n min!’

The generalization of the bi—variate hypergeometric functions is the Kampé de Fériet

function [11]

FA;B:B/ |:a’ b’ b/ cX y] = i (al)m+n-~~(aA)m+n(b1>m...(bB)m(b/l)n..-(b/B/)n me” (246)
GDo:DY e d,d’ ~ (cDmtn--€min(@Dm--.(dp)m(@)n...(d ) )n m!n!
m,n=0
Triple hypergeometric functions of the Lauricella—Saran type [21-23] are
o0
A b b myn_p
F4y = Fg(ay,ay,a1,b1,by;c1,¢02,¢3;,%,y,2) = Z (al)erHp( U Z)HPX Y
m=0,n=0, p=0 (Cl)m(cl)n(cl)p m!n!p!
(247)
o0
~ b b myn._p
Fi4 = Fr(ai,ai,a1,b1,by,biic1,co, 00X, 9,2) = Z @Dm+ntp @Dmp (b2)n X" y"2
m=0,1=0, p=0 (Cl)m(cz)t1+p m!n!p!
(248)
o0
A 1) (b2)n (b3) p Xy 2P
Fy = Fg(ar,a1,a1,by1, b2, b3;¢c1,¢2,02;%,9,2) = Z @ty O B b) X ),Z,
m=0,1=0, p=0 (c)m (52)n+p mln!p!
(249)
[o¢]
A b b myn_p
By = Fx(ar,as a2, by, by, b1 c1, ca, 3 %, 9, 2) = Z @)m(@2)ntp G mspb2)n x ')'z'
=00, p=0 (cDm(c2)n(c3)p m!in!p!
(250)
[o¢]
- D) p (b2)n X"y 2P
Fi1 = Fy(ay,az,a1,by, by, by;cr,c,00;%,9,2) = Z (@) @)ntp GDmp(b2)n X" y"2
m=0,1=0, p=0 (€Dm (C‘Z)ner m!n!p!
(251)
o0
A b b myn . p
Fs = Fy(ar, as, a3, b1, ba, br: c1, c2, ¢35 %, 9, 2) = Z (@)m(@2)n(a3) p(bD)m+p(b2)n x 'y' '
m=0,n—=0, p=0 €Dm (CZ)n+p mmin:.p:
(252)
o0
~ b b myn - p
Fio = Fp(ay, az, ar, by, by, b c1, 2,02 %, y, 2) = Z (ﬂl)m+/7(a2)n( Dimtn ( 2)/7 X ‘)'Z'
m=0,n=0, p=0 (Cl)m(CZ)n+p mn:p:
(253)
o0
~ b b myn.p
Fro = Fplar, as,ai, b1, by, br: c1, 02, ¢2: %, y, 7) = Z @) m+p(@2)n (b)) mpb2)n x™y"z
m=0,1=0, p=0 (Cl)m(c2)n+p m!n!p!
(254)
o0
A b b b myn.p
F; = Fp(ai, a2, az, b1, by, b3; c1,c1,¢15 %, y,2) = Z (@) (@2)ntp GDm b2)n (b3)p x™ y"2
=000, p=0 (€Dm+n+p min!p!
(255)
o0
~ b b))y xMy"ZP
Fis = Fray,as, as, by, by, bi: c1, 1, c1i %, y,2) = Z (@)m@)n+pG)m+pb2)n x 'y'z‘ .
m=0,n=0, p=0 (Cl)m+n+p mn:p:
(256)
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There are three more triple hypergeometric functions, the Srivastava functions [20],

o.¢]
Y m b m—+n b/ n mynzP
Hupla,b,b';c,c;x,y,2) = Z (@m+p(b) ,+ (EDnp X 'y'z‘ (257)
=0.4=0, p=0 ©Dm(pgp m!n!p!

(a)n1+p(b)m+n (b/)n+p x"y"zP
(cDm(c2)n(c3)p  mlnlp!

¢

Hp(a,b,b'sc1,c0,¢31x,9,2) = (258)

m=0,n=0, p=0
o0
~ b b/ m,n_p
@b Vicny,g= Yy  QurOnin@nepx 22 (259)
m=0,1=0, p=0 (m+n+p m:n:p:
These functions are given in the literature in different forms. The following identities hold
comparing to Ref. [20]:
Faar, b1, basci3x,y,2) = faoalai, by, bisci; 2, y, x) (260)
Fiaar, b1, by c15x, 9, 2) = faalar, by, ba; c1, c25 %, 2, y) (261)

Fy(ar, b1, by, b3; c1, 025 %, 9,2) = fisala1, b3, ba, bis 2,152, 5,%)  (262)
Fi(a, a2, b1, b e, 2, 3%, 9,2) = fioalaz, by, ba, ar; 2, c3, ¢15 9, 2, x) (263)
Fii(ar, a2, by, basc1, €23 %, ,2) = fiia(az, by, ba,arsea e, y,2, %) (264)
Folar, az, a3, b1, bys c1, €21 %, y,2) — fea(br, a1, a3, az, bys 1, c2ix,2,y) (265)
Fia(ar, az, by, bas c1, €23 %, ,2) = fia(br, a1, a2, ba; ca, 13y, x,2)  (266)
Fiolar, az, bi, byicr, €21 x,y,2) = foa(by, a1, az, bai c1, €21 %, 2, ) (267)
Fr(ay, az, a3, by, by, b3; 1%, v, 2) — fraaz, ba, b3, by, ag; c1; v, 2, x) (268)

Fis(ar, a2, b1, by cis x,9,2) — fiza(az, by, ba, ar; 13 y, 2, x) (269)
Hp(a.b.biic.c1:x.y.2) = fisa(br.a.bicy,ciy,z.x) (270)
Hg(a, b, biscr,ca, 3%, 9,2) = fiaa(b, b1, a; c1,c2, €31 %, 9, 2) (271)
He(a,b,bisc;x,y,2) = fiea(b. b1, aic; x, y,2). (272)

A comprehensive list of triple hypergeometric series f15 to fe2p has been given in Ref. [20,
169-179].
The quadruple hypergeometric functions by Exton [14] are’
o0

(@) ()] (b2) xlymzntl’
K, = Z +(m+)n+17( )+(m+)n p Sl ©73)
1,m,n, p=0 CI+p€2)m\C3)n m:in.p!
o
(a) (b (b2) xlymz”[P
Ky = Z (+m)+:+p) ( -)§—m(+n) P R 274)
1,m,n, p=0 c1)i€2)m (€3)n(C4)p Im!n!p!
> l,,m_n
b b tP
K3 = Z (Cl)l—&-m(—t-n;-p( (l)l;-rn( 2)11+p -7;‘)’ 'Z' ‘ 275)
I,m,n,p=0 CI+p C2)m+n m:nip!
o
(@) (b)) 1m (b2 ntp X' ym2"tP
= Z +(’"+)”+1’( )+(m) - Iminip! (276)
Lm.n, p=0 CDi+p(€2)m(€3)n Im!n!p!
o
b b l,m ngp
Ks = Z (Cl)l+m+n+p( 1)l+m( 2)11+p x‘y 'z' ' (277)
L p=0 (ci(c)m(e3)n(ca)p  l'mlnlp!

"Note various typographical errors in the literature.
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Ke i @mnspBDm (b2)n (B3) p x'y"2"1? 278)
L p=0 (i) mtn+p I'm!n!p!
& i (@14m-+n+p B 14m (B2)n (b3) p X' y™ 2" 279
L p=0 (Di+n(€)m+p l'm!n!p!
X i @1mnp BDLm (b2)n (B3) p 'y 2" 17 (250,
’ (cin(c2)m(c3) l'm!n!p!
1m,n, p=0 DI4+n\C2)m\C3)p P
Ko i (@14m+ntp B 14m (52)n (b3) p x'y™ 2" tP 081
1,m,n, p=0 (Cl)] (Cz)m (63)n+p l'm'n‘p'
Ko i @1t p 01)1m (b2)n (B3) p 2!y 2" 17 082)
Lnmp=0 (e)i(e2dm(c3)nlca)p llm!n!p!
i i @1tmnp (B (02 (b3)n (ba) p 'y 2" 17 083)
L p=0 (€D i4m+n(€2) p l'm!n!p!
iy i @1ttt p (b1 (B2)n (B3) (ba) p X'y 2"t o)
Lmmp=0 (€Dt4m(€2)n+p I'm!n!p!
Kis i @tmtnp (011 (B2 (B3) (ba) p 6y "7 085)
=0 (€D14m(c2)n(c3)p l'm!n!p!
Kis i @1tmn (01) p (214 p (b3)m (ba) x'y" 2"t 056
Lmomp=0 (©14man+p !'m!n!p!
Kis i @1tmn (01) p (2)1(B3)m (ba)n (b5) p x"y" 2" 17 287)
Lnmp=0 (CDi+mtn+p l'm!n!p!
0 l,m_nsp
t
K1 Z (al)l+m(a2)l+n(a3)m+17(a4)n+p );‘y 'Z' : (288)
L p=0 (©i+m+n+p 'm!n!p!
K1y i (@)11m (DD 110 (B2 m 40 (b3) p(ba) p x'y"2"1P (289)
Lm,n, p=0 (C)l+m+n+p l‘m'l’l‘p’
o0
b1 p (b b3) (b m gy
Kis Z (a)ler( 1)l+p( 2)m+n( 3)n( 4)]) x'y' - (290)
Lnmp=0 (cOD1+m+n+p I'm!n!p!
o0 l\,m_n
b b b3)n (b b tP
K1o Z (@)i4m (D1)14n(b2)m (b3)n (ba) p( 5)p);'y'z‘ ’ (291)
1m,m, p=0 (Cl)l+m+n+p m!n!p!
Koo i (@) 14m (@)t p (011 (B2 (b3) (ba) p x'y™2"tP (292)
L p=0 (eOD1+mtntp 'm!n!p!
o0
b1)i(b b3)n(ba) »(b5)n (b Lymangp
Ko Z (@) 14m (D1)1(D2)1m (b3)n (ba) p (D5)n (be) p X" y™ 2"t (293)

l,m,n, p=0

(CD14m+n+p !!'m!n!p!
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Furthermore, there are the multivariate Lauricella functions [21]

00 mi my
a b ...(b X7 X
F{ @ b1, oo byt €1 o o3 X1 i) = Y @myectmy OBy X1
iy =0 €Dmy--(Cn)m, myl..mpy!
(294)
[e’e] my my
a ...(a b ...(b Xy X
F;n)(a] oy, bl . bn; Cly oo Crt X1 oo Xn) _ Z ( l)m1 ( n)m,,( 1)m1 ( n)m,, 1 n
sy = (Cl)mlm(cn)m” mil.mpy!
(295)

My

i (a)m]+4..m,, (b)m|+..4m” anl <X (296)
(Cl)m] --~(Cn)m,1 mil..m,!

n
Fé)(a,b;q,.‘.,cn;xl,...,xn) =

00 m m
Z (u)mlJr---mn (b1 )ml w(bn)m,, Xy L
(C)m1+.4.m,, mil...my!

(297)

FO(a, by.bys ¢ X1, oo Xn) =

The file cases . m gives an even more extensive computer—readable list of these functions.

Appendix B: Mapping conditions to the Pochhammer case

The parameters of the general representations of the (partial) differential equations given in
Section 2, leading to product solutions, obey the well-know Pochhammer solutions, if they
apply a number of relations. Here we present some typical examples for these relations.
The case of two variables:

F

H

Si

Hal = af b} > a+p+1{cal—> —y.{dgdi,e1} > —1,{e. h e, 11} = 1,

(Y= B.{j. j1} = 0. {a1} = ap1. {b1} = a + f1 + L. {f1} = B1} (298)

Ha} > af, b} > a+B+1,{c} > —68,{d, j, g1} > —L.{e,di,er, 1} = 1,

{(f} »a—=B8—-1{g.h j1} > 0. {a1} = By, (b1} > B+yv+1L{ct} > 1-a,
{fiy =y (299)

Hal = aci B {0} > A+ o)1+ B) +a(l +ai + B); {c} = —(¥d);

{d} > —1—y =&l =>3+tatar+B8{fl > U +a+a)p;{g} > =5
{h} > 3+ta+ar +28;{j} = B:{l,q. di, &1} > —1;{p,s,e1, i} > 5
{r,h1} — 2:{a1} = aay; {by, fi} > 1 +a+ap;{c}) — —y. (300)

The case of three variables, [20]:

fiv

fr1a

{A} = b1b2; {Bo} > —c¢; {B1} = 1+ b1 + by {C1} > —b2; {D1} — —by;

{Eo, H], L1, Hz,, L/z,} — —1; {E], Sl, Fé, Fl/’ Gg, G/l,} — 1; {F], G[, Ho, Lo, Bi, D,l’
E}, G\, H{,L}, Sy S1, BY,C{. E{, F{, H{, L, S{, S5} = 0; {A"} = ajaz;

{Co} = 1= b1 {C]} = 1+ a1 + a2 {A"} — azas; {Dg} — 1 — by;

{D/l/} —>1+a3+as (301)

: {A, A"} > a1a2; {Bo} — —c1; {B1, C1, B}, Ci} > 1 + a1 + az; {D1, D}} — ap;

{Eo, Fy, Sy, G, S5} — —L:{E1, F1, L1, 81, E}, F{, L, S|, G|, L{, S} = 1;
{G1, Ho, Lo, G}, Hy, E{, F{', H{', L}} — 0; {Hy, H{} — 2; {C}, D{} > —c2;
{A"} = ara3; (B, C{} = a3; (D]} = 1 + a1 + a3 (302)
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forw + {A} = araz; {Bo, Cp} = 1 — by {B1} — 1 + a1 +ap; {C1} — az; {D1, F1, Gy,
Ly, Sy, D,I! Ei, G’l, /1, i, /2’, Sé’} — 0; {Ey, E1, Hy, Hy, F(/), Fl,, Hl,’ HZ/, Ei’, Fl”} — 1;
{Lo. So} = —2:{A"} = aja3; {B]} = a3: {C}} = 1 + a1 +a3: {A"} = b(1 +b);
{B{,C{} —> =2b; {D§} - —c; (D]} — 2(3 + 2b);
(Go) = —L (G} — 4 {H{) > 2 {L]. S} > —4. (303)

The case of four variables, [14, 15]:

K1 : {A, A, A"} — aby; {Bo, Ej'} > —c1; {B1, C1, D1, By, C{, D}, B{, CY,
D{’} — 14+a+by;{Ey, E{, EQ/} — by; {Fo, Po, Gé, HY, 6”, P2”/} - —1;
{F1,G1, Hi, P1, Ry, S1, Fl', G'l, Hl/, Pl', /1, Si, Fl”, G’l', Hl”, Pl”, i/, Si', '1”, Pl/”,
R;”, S{”} — 1;{L, My, No, L/l, Mé, Qz), R(’), /1/, Né/, Q/z’, S()/, Fl/”, G/l”, H]/”, Ml’”,
N{", O, Ry, 8"} = 0; {M1, N1, Q1, My, N{, Q}, M{, NY, O} — 2; {Co} — —c2;
(D} = —c3;{A""} = abo; (B, C{", D{"Y = by {(E{"} > 1 +a + b (304)
Kz : {A} — aby; {Bo, Cy, Dy, Eg'} = —c1; {B1} > 1 +a+b1; {C1} — by;
{D1, E1,G1, Hi, L1, Ny, P, Q1, Ry, 81, D}, Ey, F|, H{, L}, N{, P{, Q1. R, S}, B, C{,
1> FI' G, LY, MY, N{, Py, Q1 Ry, S, BY", C{', D', FY", GY', HY", My", Ni", P{", QY
7, 87"y = 0; {Fo, Mo, No, Po, Gy, M5, Qp, R}, HY, Ny, 0, Sy. Ly . Py, Ry, Y/} — —1;
{F1, M1, Gy, My, H{, L'} > 1;{A"} > aby; {B]} = by; {C]} > 1 +a+by;
{A"} = b3bs; {D{} — 1+ b3 + bs; {A"} — babe; {E{"} — 1+ ba + be). (305)
The complete list of relations is given in computer readable form in the attachment
Mconditions.m to this paper.

Appendix C: A brief descriptions of the commands of HypSeries

In the following we describe the commands available in the Mathematica pack-
age HypSeries. To execute this package requires also the packages Sigma,
EvaluateMultiSums [125-128], and HarmonicSums as well as other packages, see
Appendix F. The user has to provide n (partial) differential equations in the n—variable case.
The commands

solveDEl, solveDE2, solveDE3, solveDE4

check whether the corresponding set of one to four variables has product solutions by
consulting internal lists of cases. If applicable, the corresponding product solution for the
expansion coefficients f(m) to f(m, n, p, q) are provided. In the bi—variate case subclasses
are dealt with individually. The command is e.g.

solveDE4 [{eql==0,eqg2==0,eq3==0,eq4==0},{x,v, 2z, t},{m,n,p,q}l.
More general solutions are possible by using the command DEProductSolution.
One has to provide the required n differential equations in the list
sys = {eql==0,...,eqn==0}
Then
DEProductSolution[sys,{x,y,...},{m,n,...}]

returns the respective expansion coefficient £ (m,n, p,q). Here the tools described in
Section 3.1 are utilized.
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If one has, on the reverse, a Pochhammer ratioA = f (m,n,p, q) the command
findDE [A,{x,y, ...}, {m,n,...}]

returns the system of differential equations obeyed by
o0

flx,y,..)= Z flm,n,..)x"y" ...

m,n,..>=0
Given a differential equation equ in n variables the command £findRE
findRE [eg==0,{x,y, ...}, {m,n, ...}]

returns a corresponding recurrence for £ (m, n, . . . ). The last two commands implement
the techniques presented in the beginning of Section 3.

To prepare for the expansion in the dimensional parameter &, which frequently occurs in
the parameters of the differential and difference equations, one usually needs to check for
the convergence domain of the corresponding solution, to be able to perform the respective
limit N — oo in the sums involved. Generally it is assumed that {x, y, z, t} €]—1, 1[. How-
ever, often stronger conditions are needed in the multivariate cases. Internal Tables, cf. [20],
allow to check for this in the bi— and tri-variate cases using the commands £indCond2
and £indCond3. One first has to determine the corresponding function label fcn via
classifier2,classifier3,ase.g.

classifier3[f[m,n,pl, {x,v,z}, {m,n,p}]

returning £cn. Then
findCond3 [fen, {x,y, z}]

returns the convergence conditions, which are in some cases given in implicit form. The e—
expansion is performed using algorithms implemented in Sigma. The attached notebooks
ExHypSeries.nb and ExSolvePartialLDE.nb give a more detailed explanation
on this.

In the cases wherein the e—expansion of the considered higher transcendental functions
can be performed to a certain power O(gX) one may want to check, whether the solu-
tion satisfies the corresponding differential equations. This is provided by the command
CheckDE [sol, eq], where sol denotes the solution up to the corresponding degree in &
and eq the differential equation:

CheckDE [so01l, eq]

returns then a result, which is of higher order in ¢.

Appendix D: A brief descriptions of the commands
of solvePartialLDE

The Mathematica package SolvePLDE.m implements the aforementioned algorithms
for solving partial linear difference equations. It requires Sigma and HarmonicSums
to be loaded. Additionally, the software Singular [180] must be installed, and made
available through the interface given in [181]. The installation path of Singular can be
set using the command appropriate for the user’s system, e.g.

<<Singular.m

SingularCommand = " (path to)/Singular-4.1.3-x86_64-Linux/bin
/Singular".
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The functions available are

® spreadlp,q,{n, k,...}(,{eps,...})]: this function calculates the spread of
the polynomials p and ¢, in the variables n, k, . . .. The symbols in the optional list are
treated as an extension to the field over which the polynomials are defined. If the poly-
nomials p and g contain symbolic parameters other than n, k, . . ., such as for instance
the dimensional regulator &, they must be declared in the second list.

® dispersion(p,q,{n, k,...}(,{eps,...})]1:thisfunction calculates the dis-
persion (it is the maximum of the spread) of the polynomials p and ¢ in the variables
n, k, .... The second optional list has the same function as in the function spread.

® SolvePLDE [eg==rhs,f[n,k,...], (options)]. This command solves the
linear partial difference equation. It has the following available options:

— UseObject — list of Harmonic sums and/or Pochhammer symbols
Allows to define a list of harmonic sums and Pochhammer symbols to be
searched in the numerator of the solution.

— PLDEdegBound — d
Allows to choose the total degree d of the Ansatz for the numerator of the
solution. Defaults to 0.

— InsertDenFactor — factors
In the case the periodic denominator bound was not complete, the user may
force the search to include factors in the denominator.

— PLDESymbols — list
Any symbols appearing other than the shift variables must be declared in list.

— Initialvalues — list
A list of initial values in the form {{var, — wvalj,var, —
valy, ..., initialvalue}, ...}

— SymbolDegree —d
When initial conditions are provided, a linear combination of the homo-
geneous solutions is built, having as coefficients rational functions in the
symbols. This option sets the maximum total degree of the numerator and
denominator of those rational functions.

® SolveExpand[eqg==rhs,f[n,k,...],PLDEExpandIn — {¢, €min, lmax},
Initialvalues — {...}, (options)] : this command solves the PLDE in a series
expansion in a parameter. The options are the same as for So1lvePLDE.

® ecxpandHypergPref [eq==rhs, f[n,k,...]1,fac].Thiscommand derivesa
new equation whose solution has the hypergeometric factor f£ac removed, as described
in Section 6.3.1.

Appendix E: A constant
We calculate the constant C given in (115). The two contributions to this infinite sum do

both diverge, while

C ~2.759413418790153909406713643175. (306)
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Unfortunately (115) cannot simply be written in terms of a hypergeometric function of main
argument 1, since this diverges, which is easily seen by applying Gau3’ formula. However,
one can define it as the following limit

. ISR VERS SRR VE T cosh [@] In(e) 207
— 1 — »F _ Y- YT o1-1 — -t - J U
Jim, 2k 3 Syt ikl-e - (307)
Before expanding in ¢ one should map the main argument as, cf. e.g. [7],
1
l—e—> ——1. (308)
e

Furthermore, the relation for the digamma function
Y1 —2z) =v¥(z) + meot(mz) (309)

shall be used. One finally obtains (116). In deriving (116) one obtains first an expression
both containing the real and the imaginary part of v (% + %) Those obey the following

integral representations

0 L —fldt til/zcos[gmm] ! 310
Myl = ), -1 ~In() 10

N 1 i3\t a3 o V3

While the imaginary part of ¥ (% + %) evaluates to a basic function, a further simplifi-

cation seems not to be possible.
The new entities emerging here are therefore

TV and (; n “f) . (12)

In the expansion of multi—variate series of the Pochhammer-type one expects quite new
classes of special numbers to emerge, which will become a potential research topic in the
future.

Appendix F: Software required

The ancillary files cover the Mathematica notebooks ExHypSeries.nb and
ExSolvePartialLDE.nb . Their execution requires the following software packages,
which can be downloaded from the software site of the RISC institute:
EvaluateMultiSums.m https:/risc.jku.at/sw/evaluatemultisums/
Guess.m, LinearSystemSolver.m
https://risc.jku.at/sw/guess/
HarmonicSums.m https://risc.jku.at/sw/harmonicsums/
Sigma.m https://risc.jku.at/sw/sigma/
In addition, the computer algebra system Singular
Singular.m http://www.singular.uni-kl.de
has to be installed in order to execute the Mathematica package SolvePartialLDE.m.
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All data and its supplementary information files generated or analyzed during this study
are included in this published article:
cases.m
converg.m
HypSeries.m
Mconditions.m
SolvePartiallDE.m
ExHypSeries.nb
ExSolvePartiallDE.nb.

It is recommended to download all precomputed tables for HarmonicSums. The
Mathematica notebooks ExHypSeries.nb and ExsolvePartialLDE.nb con-
tain the information from where the correct version of the used packages can be
downloaded.

While the notebook ExsolvePartialLDE.nb needs a few minutes computation
time only, ExHypSeries.nb needs 1.32 days.

Acknowledgements We thank J. Ablinger, D. Broadhurst, and P. Marquard for discussions. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Sktodowska—Curie grant agreement No. 764850, SAGEX and from the Austrian Science Fund (FWF)
grant SFB F50 (F5009-N15) and P33530.

Funding Open access funding provided by Austrian Science Fund (FWF).

Data Availability The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files; see also Appendix F.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

1. Hamberg, R.: Second order gluonic contributions to physical quantities, Ph.D. Thesis Leiden University
(1991)

2. Davydychev, A.L., Kalmykov, M.Y.: Massive Feynman diagrams and inverse binomial sums. Nucl Phys
B 699, 3-64 (2004). arXiv: hep-th/0303162

3. Bierenbaum, I., Bliimlein, J., Klein, S.: Two-loop massive operator matrix elements and unpolarized
heavy flavor production at asymptotic values Q% > m?. Nucl. Phys. B. 780, 40-75 (2007). arXiv:
hep-ph/0703285

4. Kalmykov, M., Bytev, V., Kniehl, B.A., Moch, S.O., Ward, B.FL., Yost, S.A.: Hypergeomet-
ric Functions and Feynman Diagrams. arXiv: 2012.14492. In: Bliimlein, J., Schneider, C. (eds.)
Anti-differentiation and the calculation of Feynman amplitudes, (Springer, Heidelberg) (2021)

5. Klein, E: Vorlesungen iiber die hypergeometrische Funktionen, Wintersemester 1893/94, Die
Grundlehren Der Mathematischen Wissenschaften, vol 39. Springer, Berlin (1933)

6. Bailey, W.N.: Generalized hypergeometric series. Cambridge University Press, Cambridge (1935)

7. Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/0303162
http://arxiv.org/abs/hep-ph/0703285
http://arxiv.org/abs/2012.14492

644

J. Blimlein et al.

8

9

10.
11.

12.

13.

14.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

a

. Appell, P, Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques, polynomes D’
Hermite, (Gauthier-Villars Paris (1926)

. Appell, P.: Les fonctions hypergéométriques de plusieur variables. Gauthier-Villars, Paris (1925)

Kampé de Fériet, J.: La fonction hypergéométrique. Gauthier-Villars, Paris (1937)

Kampé de Fériet, J.: Les fonctions hypérgeométriques d’Ordre Superieur & Deux Variables. C R Acad

Sci Paris 173, 489-491 (1921)

Borngisser, L.: Uber hypergeometrischen Funktionen zweier Verdnderlichen, Thesis, P. h. D, (TU

Darmstadt) (1933)

Horn, J.: Hypergeometrische Funktionen zweier Verdnderlichen. Math Ann, vol. 105 (1931), pp. 381-

407; 111 638-677 (1933)

Exton, H.: Certain hypergeometric functions for four variables. Bull. Soc. Math. Gre,ce. N.S. 13, 104—

113 (1972)

. Exton, H.: Multiple hypergeometric functions and applications. Ellis Horwood, Chichester (1976)

. Exton, H.: Handbook of hypergeometric integrals. Ellis Horwood, Chichester (1978)

. Schlosser, M.J.: Multiple hypergeometric series: Appell series and beyond. In: Schneider, C., Bliimlein,

J. (eds.) Computer algebra in quantum field theory: integration, summation and special functions,

pp. 305-324, (Springer, Wien) [arXiv: 1305.1966] (2013)

Anastasiou, C., Glover, E'W.N., Oleari, C.: Scalar one loop integrals using the negative dimension

approach. Nucl. Phys. B572, 307-360 (2000). arXiv: [hep-ph/9907494]

Anastasiou, C., Glover, E.W.N., Oleari, C.: Application of the negative dimension approach to massless

scalar box integrals. Nucl. Phys. B565, 445-467 (2000). [arXiv: hep-ph/9907523]

Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian hypergeometric series. Ellis Horwood, Chicester

(1985)

Lauricella, G.: Sulle funzioni ipergeometriche a piu variabili. Rendiconti del Circolo Matematico di

Palermo 7(S1), 111-158 (1893)

Saran, S.: Hypergeometric functions of three variables. Ganita. 5, 77-91 (1954)

Saran, S.: Transformations of certain hypergeometric functions of three variables. Acta. Math. 93, 293—

312 (1955)

Erdélyi, A.: (Ed.) Higher transcendental functions, vol. 1, the Bateman manuscript Project. McGraw-

Hill, New York (1953)

Kotikov, A.V.: Differential equations method. New technique for massive Feynman diagram calcula-

tion. Phys. Lett. B254, 158-164 (1991)

Bern, Z., Dixon, L.J., Kosower, D.A.: Dimensionally regulated one loop integrals. Phys. Lett. B302,

299-308 (1993). [Erratum: Phys. Lett. B318, (1993) 649] [arXiv: hep-ph/9212308]

Remiddi, E.: Differential equations for Feynman graph amplitudes. Nuovo. Cim. A110, 1435-1452

(1997). arXiv: [hep-th/9711188]

Gehrmann, T., Remiddi, E.: Differential equations for two loop four point functions. Nucl. Phys. B580,

485-518 (2000). arXiv: [hep-ph/9912329]

Ablinger, J., Behring, A., Bliimlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating

Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra.

Comput. Phys. Commun. 202, 33-112 (2016). [arXiv: 1509.08324]

Kotikov, A.V.: The Property of maximal transcendentality in the N=4 Supersymmetric Yang-Mills. In:

Diakonov, D. (ed.) Subtleties in quantum field theory, pp 150-174, [arXiv: 1005.5029] (1991)

Henn, J.M.: Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110,

251601 (2013). [arXiv: 1304.1806]

Ablinger, J., Bliimlein, J., Marquard, P., Rana, N., Schneider, C.: Automated Solution of First Order

Factorizable Systems of Differential Equations in One Variable. Nucl. Phys. B. 939, 253-291 (2019).

[arXiv: 1810.12261]

Lagrange, J.: Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis,t. II,

1760-61; Oeuvres t. I, pp. 263 (1760/61)

GauB, C.F.: Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo

tractate, Commentationes societas scientiarum Gottingensis recentiores, Vol III Werke Bd. V pp 5-7

(1813)

Green, G.: Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, [Green

Papers, pp. 1-115] (1828)

Ostrogradsky, M.: (presented: November 5, 1828; published: 1831) Premiére note sur la théorie de

la chaleur. Mémoires de I’ Académie impériale des sciences de St. Pétersbourg, series 6(1), 129-133

(1831)

Chetyrkin, K.G., Tkachov, F.V.: Integration by Parts: The Algorithm to Calculate Beta Functions in 4

Loops, Nucl. Phys. B. 192, 159-204 (1981)

Springer


http://arxiv.org/abs/1305.1966
http://arxiv.org/abs/hep-ph/9907494
http://arxiv.org/abs/hep-ph/9907523
http://arxiv.org/abs/hep-ph/9212308
http://arxiv.org/abs/hep-th/9711188
http://arxiv.org/abs/hep-ph/9912329
http://arxiv.org/abs/1509.08324
http://arxiv.org/abs/1005.5029
http://arxiv.org/abs/1304.1806
http://arxiv.org/abs/1810.12261

Hypergeometric structures in Feynman integrals 645

38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

64.

Laporta, S.: High precision calculation of multiloop Feynman integrals by difference equations. Int. J.
Mod. Phys. A. 15, 5087-5159 (2000). [arXiv: hep-ph/0102033]

Marquard, P., Seidel, D.: The Crusher algorithm, unpublished

Studerus, C.: Reduze — Feynman Integral Reduction in C++. Comput. Phys. Commun. 181, 1293-1300
(2010). [arXiv: 0912.2546]

von Manteuffel, A., Studerus, C.: Reduze 2 - Distributed Feynman Integral Reduction, arXiv:
1201,4330, (2012)

Bostan, A., Chyzak, F., de Panafieu, E.: Complexity estimates for two uncoupling algorithms. In:
Proceedings of ISSAC’13, Boston, [arXiv: 1301.5414] (2013)

Ziircher, B.: Abbildungen, Rationale Normalformen von pseudo-linearen Abbildungen, Master’s
Thesis, Mathematik, ETH Ziirich (1994)

Gerhold, S.: Uncoupling systems of linear Ore operator equations, Master’s thesis, RISC, J. Kepler
Universityv Linz (2002)

Janet, M.: Sur les systemes d’équations aux dérivées partielles. Journal de mathématiques pures et
appliquées 8 ser 3, 65-152 (1920)

Schwarz, F.: Janet Bases for Symmetry Groups. In: Buchberger, B., Winkler, F. (eds.) Grobner Bases
and Applications, Lecture Notes Series vol 251, (London Mathematical Society, London), pp. 221-234
(1998)

Boos, E.E., Davydychev, A.L.: A Method of evaluating massive Feynman integrals, Theor. Math. Phys.
89, 1052-1063 (1991)

Davydychev, A.L: General results for massive N point Feynman diagrams with different masses. J.
Math. Phys. 33, 358-369 (1992)

Broadhurst, D.J., Fleischer, J., Tarasov, O.V.: Two loop two point functions with masses: Asymp-
totic expansions and Taylor series, in any dimension. Z Phys C. 60, 287-302 (1993). [arXiv:
hep-ph/9304303]

Berends, F.A., Buza, M., Bohm, M., Scharf, R.: Closed expressions for specific massive multiloop
selfenergy integrals. Z. Phys. C. 63, 227-234 (1994)

Bauberger, S., Berends, F.A., Bohm, M., Buza, M.: Analytical and numerical methods for massive two
loop selfenergy diagrams. Nucl. Phys. B. 434, 383-407 (1995). [arXiv: hep-ph/9409388]

Fleischer, J., Jegerlehner, F., Tarasov, O.V.: A New hypergeometric representation of one loop scalar
integrals in d dimensions. Nucl. Phys. B. 672, 303-328 (2003). [arXiv: hep-ph/0307113]

Watanabe, N., Kaneko, T.: One loop integration with hypergeometric series by using recursion relations.
J. Phys. Conf. Ser. 523, 012063 (2014). [arXiv: 1309.3118]

Bliimlein, J., Phan, K.H., Riemann, T.: Scalar one-loop vertex integrals as meromorphic functions of
space-time dimension d. Acta Phys Polon B 48, 2313 (2017). [arXiv: 1711.05510]

Phan, K.H., Riemann, T.: Scalar 1-loop Feynman integrals as meromorphic functions in space-time
dimension d. Phys. Lett. B. 791, 257-264 (2019). [arXiv: 1812.10975]

Bauberger, S., Bohm, M., Weiglein, G., Berends, F.A., Buza, M.: Calculation of two-loop self-
energies in the electroweak Standard Model. Nucl. Phys. B. Proc. Suppl. 37(2), 95-114 (1994). [arXiv:
hep-ph/9406404]

Ablinger, J., Blimlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wi3brock, F.: Massive 3-loop ladder
diagrams for quarkonic local operator matrix elements. Nucl. Phys. B. 864, 52-84 (2012). [arXiv:
1206.2252]

Salvy, B., Zimmermann, P.: GFUN: a Maple package for the manipulation of generating and holonomic
functions in one variable. ACM Trans Math Software 20, 163—-177 (1994)

Mallinger C., C.: Algorithmic manipulations and transformations of univariate holonomic functions
and sequences. Master’s thesis, RISC, J. Kepler University Linz (1996)

Kauers, M., Paule, P.: The concrete tetrahedron, Texts and monographs in symbolic computation
(Springer Wien) (2011)

Schneider, C.: Symbolic summation assists combinatorics. Sém Lothar. Combin. 56, 1-36 article B56b
(2007)

Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Bliimlein, J. (eds.)
Computer algebra in quantum field theory: integration, summation and special functions. Texts and
monographs in symbolic computation (Springer, Wien) pp. 325-360 [arXiv: 1304.4134] (2013)

. Schneider, C.: Algebras, term representations, canonical difference ring theory for symbolic summation

arXiv: 2102.01471. In: Bliimlein, J., Schneider, C. (eds.) Anti-differentiation and the calculation of
Feynman amplitudes, (Springer), Heidelberg (2021)

Schneider, C.: A Collection of Denominator Bounds to Solve Parameterized Linear Difference
Equations in ITX-Extensions. An. Univ. Timisoara Ser. Mat-Inform. 42, 163 (2004)

@ Springer


http://arxiv.org/abs/hep-ph/0102033
http://arxiv.org/abs/0912.2546
http://arxiv.org/abs/1201,4330
http://arxiv.org/abs/1301.5414
http://arxiv.org/abs/hep-ph/9304303
http://arxiv.org/abs/hep-ph/9409388
http://arxiv.org/abs/hep-ph/0307113
http://arxiv.org/abs/1309.3118
http://arxiv.org/abs/1711.05510
http://arxiv.org/abs/1812.10975
http://arxiv.org/abs/hep-ph/9406404
http://arxiv.org/abs/1206.2252
http://arxiv.org/abs/1304.4134
http://arxiv.org/abs/2102.01471

646

J. Blimlein et al.

65

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

84.
85.
86.
87.
88.
89.
90.

91.
92.

a

. Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and
products. J. Differ Equations Appl. 11, 799-821 (2005)

Schneider, C.: Degree bounds to find polynomial solutions of parameterized linear difference equations
in [TX-Fields. Appl. Algebra. Engrg. Comm. Comput. 16, 1-32 (2005)

Abramov, S.A., Bronstein, M., Petkovsek, M., Schneider, C.: On rational and hypergeometric solutions
of linear ordinary difference equations in I[1X*-field extensions. J. Symbolic. Comput. 107, 23-66
(2021). [arXiv: 2005.04944]

Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A. 14, 2037-
2076 (1999). [arXiv: hep-ph/9806280]

Bliimlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D. 60,
014018 (1999). [arXiv: hep-ph/9810241]

Ablinger, J., Bliimlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic
polynomials. J. Math. Phys. 52, 102301 (2011). [arXiv: 1105.6063]

Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions and multiscale
multiloop integrals. J. Math. Phys. 43, 3363-3386 (2002). [arXiv: hep-ph/0110083]

Weinzierl, S.: Symbolic expansion of transcendental functions. Comput. Phys. Commun. 145, 357-370
(2002). [arXiv: math-ph/0201011]

Moch, S., Uwer, P.: XSummer: Transcendental functions and symbolic summation in Form. Comput.
Phys. Commun. 174, 759-770 (2006). [arXiv: math-ph/0508008]

Huber, T., Maitre, D.: HypExp: A Mathematica package for expanding hypergeometric functions
around integer-valued parameters. Comput. Phys. Commun. 175, 122-144 (2006). [arXiv: hep-
-ph/0507094]

Huang, Z.W., Liu, J.: NumExp: numerical epsilon expansion of hypergeometric functions. Comput.
Phys. Commun. 184, 1973-1980 (2013). [arXiv: 1209.3971]

Huber, T., Maitre, D.: HypExp 2, expanding hypergeometric functions about Half-integer parameters.
Comput. Phys. Commun. 178, 755-776 (2008). [arXiv: 0708.2443]

Kalmykov, M.Y., Ward, B.FL., Yost, S.A.: On the all-order epsilon-expansion of generalized hyperge-
ometric functions with integer values of parameters. JHEP. 11, 009 (2007). [arXiv: 0708.0803]

Bytev, V.V., Kalmykov, M.Y., Kniehl, B.A.: HYPERDIRE, HYPERgeometric functions DIfferential
REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric
functions , Fj,_1, Fy, F, F3, F4. Comput. Phys. Commun. 184, 23322342 (2013). [arXiv:1105.3565]
Bytev, V.V.,, Kalmykov, M.Y., Moch, S.0.: HYPERgeometric functions DIfferential REduction
(HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hyperge-
ometric functions: Fp and Fs Horn-type hypergeometric functions of three variables. Comput. Phys.
Commun. 185, 3041-3058 (2014). [arXiv: 1312.5777]

Greynat, D., Sesma, J.: A new approach to the epsilon expansion of generalized hypergeometric
functions. Comput. Phys. Commun. 185, 472478 (2014). [arXiv: 1302.2423]

Greynat, D., Sesma, J., Vulvert, G.: Derivatives of the Pochhammer and reciprocal Pochhammer sym-
bols and their use in epsilon-expansions of Appell and Kampé de Fériet functions. J. Math. Phys. 55,
043501 (2014)

Itzykson, C., Zuber, J.-B.: Quantum field theory. McGraw-Hill, New York (1980)

. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge University Press, Cambridge
(1927)

Barnes, E.W.: A transformation of generalized hypergeometric series. Quarterly Journal of Mathematics
41, 136-140 (1910)

Mellin, H.: Abrif} einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen.
Math. Ann. 68(3), 305-337 (1910)

Czakon, M.: Automatized analytic continuation of Mellin-Barnes integrals. Comput. Phys. Commun.
175, 559-571 (2006). [arXiv: hep-ph/0511200]

Smirnov, A., Smirnov, V.: On the Resolution of Singularities of Multiple Mellin-Barnes Integrals. Eur.
Phys. J. C62, 445-449 (2009). [arXiv: 0901.0386]

Smirnov, V.A.: Analytical result for dimensionally regularized massless on shell double box. Phys.
Lett. B. 460, 397-404 (1999). [arXiv: hep-ph/9905323]

Tausk, J.B.: Nonplanar massless two loop Feynman diagrams with four on-shell legs. Phys. Lett. B.
469, 225-234 (1999). [arXiv: hep-ph/9909506]

Pochhammer, L.: Zur Theorie der Euler’schen Integrale. Math. Ann. 35, 495-526 (1890)

Kratzer, A., Franz, W.: Transzendente Funktionen. Geest Portig, Leipzig (1960)

Bliimlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral
calculus. J. Symb. Comput. 47, 1267-1289 (2012). [arXiv: 1011.2656]

Springer


http://arxiv.org/abs/2005.04944
http://arxiv.org/abs/hep-ph/9806280
http://arxiv.org/abs/
http://arxiv.org/abs/1105.6063
http://arxiv.org/abs/hep-ph/0110083
http://arxiv.org/abs/math-ph/0201011
http://arxiv.org/abs/math-ph/0508008
http://arxiv.org/abs/hep-ph/0507094
http://arxiv.org/abs/1209.3971
http://arxiv.org/abs/0708.2443
http://arxiv.org/abs/0708.0803
http://arxiv.org/abs/1105.3565 
http://arxiv.org/abs/1312.5777
http://arxiv.org/abs/1302.2423
http://arxiv.org/abs/hep-ph/0511200
http://arxiv.org/abs/0901.0386
http://arxiv.org/abs/hep-ph/9905323
http://arxiv.org/abs/hep-ph/9909506
http://arxiv.org/abs/

Hypergeometric structures in Feynman integrals 647

93.

94.

9s.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Gluza, J., Kajda, K., Riemann, T.. AMBRE: A Mathematica package for the construction of Mellin-
Barnes representations for Feynman integrals. Comput. Phys. Commun. 177, 879-893 (2007). arXiv:
0704.2423

Gluza, J., Kajda, K., Riemann, T., Yundin, V.: Numerical evaluation of tensor Feynman integrals in
Euclidean kinematics. Eur. Phys. J. C. 71, 1516 (2011). [arXiv: 1010.1667]

Dubovyk, I., Gluza, J., Somogyi, G.: Mellin-Barnes integrals: a primer on particle physics applications,
lecture notes in physics, band 1008, (Springer, Berlin), [arXiv: 2211.13733] (2023)

Zhdanov, O.N., Tsikh, A.K.: Investigation of multiple Mellin-Barnes integrals by means of multidi-
mensional residue. Sib. Math. J. 39, 281-298 (1998)

Passare, M., Tsikh, A., Zhdanov, O.: A multidimensional Jordan residue lemma with an application to
Mellin-Barnes integrals. Aspects of Math E 26, 233-241 (1994)

Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes integrals (Encyclopedia of mathematics and
its applications, vol 85). Cambridge University Press, Cambridge (2001)

Passare, M., Tsikh, A.K., Cheshel, A.A.: Multiple Mellin-Barnes integrals as periods of Calabi-Yau
manifolds with several moduli. Teor. Mat. Fiz. 109N3, 381-394 (1996). [arXiv: hep-th/9609215]
Friot, S., Greynat, D.: On convergent series representations of Mellin-Barnes integrals. J. Math. Phys.
53, 023508 (2012). [arXiv: 1107.0328]

Davydychev, AL, Grozin, A.G.: Effect of m(c) on b-quark chromomagnetic interaction and on-shell
two loop integrals with two masses. Phys. Rev. D. 59, 054023 (1999). [arXiv: hep-ph/9809589]
Bierenbaum, I., Weinzierl, S.: The massless two loop two point function. Eur. Phys. J. C. 32, 67-78
(2003). [arXiv: hep-ph/0308311]

Halliday, I.G., Ricotta, R.M.: Negative dimensional integrals, 1. Feynman graphs. Phys. Lett. B. 193,
241-246 (1987)

Dunne, G.V., Halliday, I.G.: Negative dimensional integration. 2. Path integrals and fermionic equiva-
lence. Phys. Lett. B. 193, 247-252 (1987)

Dunne, G.V., Halliday, 1.G.: Negative dimesnional oscillators. Nucl. Phys. B. 308, 589-618 (1988)
Ricotta, R.M.: Negative dimensions in field theory. In: Falomir, H., Ferreira, P.L., Gamboa Saravi, R.E.,
Schaposnik, F.A. (eds.) J. J. Giambiagi Festschrift, World Scientific, Singapore 350-366 (1990)
Suzuki, A.T., Schmidt, A.G.M.: Two loop selfenergy diagrams worked out with NDIM. Eur. Phys. J.
C. 5, 175-179 (1998). [arXiv: hep-th/9709144]

Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration for massive four point functions. 1.
The Standard solutions, [arXiv: hep-th/9707187]

Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration for massive four - point functions. 2.
New solutions, [arXiv: hep-th/9709167]

Suzuki, A.T., Schmidt, A.G.M.: An easy way to solve two loop vertex integrals. Phys. Rev. D. 58,
047701 (1998). [arXiv: hep-th/9712108]

Suzuki, A.T., Schmidt, A.G.M.: Solutions for a massless off-shell two loop three point vertex, [arXiv:
hep-th/9712104]

Suzuki, A.T., Schmidt, A.G.M.: Negative dimensional integration revisited. J. Phys. A. 31, 8023-8039
(1998)

Suzuki, A.T., Schmidt, A.G.M., Bentin, R.: Probing negative dimensional integration: Two loop
covariant vertex and one loop light cone integrals. Nucl. Phys. B. 537, 549-560 (1999). [arXiv:
hep-th/9807158]

Suzuki, A.T., Schmidt, A.G.M.: Can. J. Phys. 78, 769-777 (2000). [arXiv: hep-th/9904195]

Suzuki, A.T., Schmidt, A.G.M.: Feynman integrals with tensorial structure in the negative dimensional
integration scheme. Eur. Phys. J. C. 10, 357-362 (1999). [arXiv: hep-th/9903076]

Suzuki, A.T., Santos, E.S., Schmidt, A.G.M.: One loop N point equivalence among negative dimen-
sional, Mellin-Barnes and Feynman parametrization approaches to Feynman integrals. J. Phys. A. 36,
11859-11872 (2003). [arXiv: hep-ph/0309080]

Gonzalez, 1., Moll, V.H.: Definite integrals by the method of brackets. Part 1. Adv. Appl. Math. 45,
50-73 (2010). [arXiv: 0812.3356]

Gonzalez, 1., Moll, V.H., Straub, A.: The method of brackets. Part 2. Examples and applications, [arXiv:
1004.2062]

Gonzalez, 1., Moll, V.H.: Definite integrals by the method of brackets. Part 1. Adv. Appl. Math. 45,
50-73 (2010)

Gonzalez, 1., Kohl, K., Jiu, L., Moll, V.H.: An extension of the method of brackets. Part 1, arXiv:
1707.08942

Gonzalez, 1., Jiu, L., Moll, V.H.: An extension of the method of brackets. Part 2. Open. Math. 18,
983-995 (2020)

@ Springer


http://arxiv.org/abs/0704.2423
http://arxiv.org/abs/1010.1667
http://arxiv.org/abs/2211.13733
http://arxiv.org/abs/hep-th/9609215
http://arxiv.org/abs/1107.0328
http://arxiv.org/abs/hep-ph/9809589
http://arxiv.org/abs/hep-ph/0308311
http://arxiv.org/abs/hep-th/9709144
http://arxiv.org/abs/hep-th/9707187
http://arxiv.org/abs/hep-th/9709167
http://arxiv.org/abs/
http://arxiv.org/abs/hep-th/9712104
http://arxiv.org/abs/hep-th/9807158
http://arxiv.org/abs/hep-th/9904195
http://arxiv.org/abs/hep-th/9903076
http://arxiv.org/abs/hep-ph/0309080
http://arxiv.org/abs/0812.3356
http://arxiv.org/abs/1004.2062
http://arxiv.org/abs/1707.08942

648

J. Blimlein et al.

122.

123.
124.

125.

126.

127.

128.

129.

130.

131.
132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.
148.

149.

150.

Ananthanarayan, B., Banik, S., Friot, S., Ghosh, S.: Multiple series representations of N-fold Mellin-
Barnes integrals. Phys. Rev. Lett. 127(15), 151601 (2021). arXiv: 2012.15108

Ananthanarayan, B., Banik, S., Friot, S., Pathak, T.: On the method of brackets [arXiv:2112.09679]
Gonzalez, 1., Kondrashuk, 1., Moll, V.H., Recabarren, L.M.: Mellin-Barnes integrals and the method of
brackets. Eur. Phys. J. C. 82(1), 28 (2022). [arXiv: 2108.09421]

Ablinger, J., Blimlein, J., Klein, S., Schneider, C.: Numerical evaluation of tensor Feynman integrals
in Euclidean kinematics. Nucl. Phys. Proc. Suppl. 205-206, 110-115 (2010). [arXiv: 1006.4797]
Bliimlein, J., Hasselhuhn, A., Schneider, C.: Evaluation of multi-sums for large scale problems, PoS
(RADCOR2011) 032 [arXiv: 1202.4303]

Schneider, C.: Modern summation methods for loop integrals in quantum field theory: the pack-
ages Sigma, EvaluateMultiSums and SumProduction. J. Phys. Conf. Ser. 523, 012037 (2014). [arXiv:
1310.0160]

Krattenthaler, C., Schneider, C.: Evaluation of binomial double sums involving absolute values. In:
Pillwein, V., Schneider, C. (eds.) Algorithmic Combinatorics: Enumerative Combinatorics, Special
Functions and Computer Algebra, (Springer, Wien) pp. 249-296 (2020)

Karr, M.: Summation in finite terms. J. ACM. 28, 305-350 (1981)

Schneider, C.: Symbolic summation in difference fields, Ph.D. Thesis, RISC, Johannes Kepler
University, Linz technical report pp. 01-17 (2001)

Schneider, C.: Simplifying sums in I1X-extensions. J. Algebra. Appl. 6, 415-441 (2007)

Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey,
A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, quantum field theory, and pseudodifferential
operators. Clay mathematics proceedings Vol. 12 (Amer Math Soc) pp. 285-308 [arXiv: 0904.2323]
(2010)

Schneider, C.: Parameterized telescoping proves algebraic independence of sums, [arXiv: 0808.2596].
Ann. Comb. 14, 533-552 (2010)

Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Gutierrez,
J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, Applications of Algebra and
Number Theory, Lecture Notes in Computer Science (LNCS) 8942 pp. 157-191 [arXiv: 13077887]
(2015)

Schneider, C.: A Refined Difference Field Theory for Symbolic Summation. J. Symbolic. Comput. 43,
611-644 (2008). [arXiv: 0808.2543v1]

Schneider, C.: A Difference Ring Theory for Symbolic Summation. J. Symb. Comput. 72, 82-127
(2016). [arXiv: 1408.2776]

Schneider, C.: Summation Theory II: Characterizations of RI1X*-extensions and algorithmic aspects.
J. Symb. Comput. 80, 616-664 (2017). [arXiv: 1603.04285]

Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference equations. In: Proc.
ISSAC’10 pp. 211-218 (2010)

Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multivariate linear difference
equations. In: Proc. ISSAC’11 pp. 201-208 (2011)

GauB}, C.E.: Disquisitiones generales circa seriem infinitam 1 + /1y, pars prior. Commentationes
societatis regiae scientarum Gottingensis recentiores 2 (1813) reprinted in Werke 3, 123-162 (1876)
Paule, P.: Contiguous relations and creative telescoping. In: Bliimlein, J., Schneider, C. (eds.) Anti-
differentiation and the Calculation of Feynman Amplitudes, (Springer, Heidelberg (2021)

Abramov, S.A., PetkovSek, M.: On the structure of multivariate hypergeometric terms. Adv. in Appl.
Math. 29, 386-411 (2002)

Ore, O.: Sur les fonctions hypergéométriques de plusieurs variables. Comptes. Rendus. Acad. Sci. Paris.
189, 1238-1240 (1929)

Ore, O.: Sur la forme des fonctions hypergéométriques de plusieurs variables. J. Math. Pures. Appl.
9(9), 311-326 (1930)

Sato, M., Shintani, T., Muro, M.: Theory of prehomogeneous vector spaces (algebraic part). Nagoya.
Math. J. 120, 1-34 (1990)

Chen, S., Feng, R., Fu, G., Li, Z.: On the structure of compatible rational functions. In: Proc. ISSAC’11
pp- 91-98 (2011)

Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)

Viete, F.: Opera mathematica (Reprinted: Bonaventurae & Abrahami Elzeviriorum, Leiden, 1646)
(1579)

Jean-Baptiste le Rond d’ Alembert: Opuscules Mathématiques, tome V (Chez Briasson, Paris) pp 171-
182 (1768)

Hurwitz, A.: Z. Math. und Physik. 27, 86-101 (1882)

@ Springer


http://arxiv.org/abs/{2012.15108}
http://arxiv.org/abs/2112.09679
http://arxiv.org/abs/2108.09421
http://arxiv.org/abs/1006.4797
http://arxiv.org/abs/1202.4303
http://arxiv.org/abs/1310.0160
http://arxiv.org/abs/0904.2323
http://arxiv.org/abs/0808.2596
http://arxiv.org/abs/13077887
http://arxiv.org/abs/0808.2543v1
http://arxiv.org/abs/1408.2776
http://arxiv.org/abs/1603.04285

Hypergeometric structures in Feynman integrals 649

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.
163.

164.
165.

166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
1717.
178.
179.
180.

181.

Ablinger, J., Bliimlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic
sums and polylogarithms. J. Math. Phys. 54, 082301 (2013). [arXiv: 1302.0378]

Ablinger, J., Bliimlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated
iterated integrals. J. Math. Phys. 55, 112301 (2014). [arXiv: 1407.1822]

Ablinger, J., Bliimlein, J., Schneider, C.: Iterated integrals over letters induced by quadratic forms.
Phys. Rev. D. 103, 096025 (2021). [arXiv: 2103.08330]

Ablinger, J., Bliimlein, J., Schneider, C.: Generalized harmonic, cyclotomic, and binomial sums, their
polylogarithms and special numbers. J. Phys. Conf. Ser. 523, 012060 (2014). [arXiv: 1310.5645]
Ablinger, J.: The package HarmonicSums: computer algebra and analytic aspects of nested sums, PoS
vol 019 [arXiv: 1407.6180] (LL2014)

Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics, Diploma
Thesis, JKU Linz, arXiv: 1011.1176 (2009)

Ablinger, J.: Computer algebra algorithms for special functions in particle Physics, Ph. D. Thesis, JKU
Linz. arXiv: 1305.0687 (2012)

Ablinger, J.: Inverse Mellin transform of holonomic sequences, PoS (LL2016) 067; Discovering and
proving infinite binomial sums identities, Experimental Mathematics 26 [arXiv: 1507.01703] (2017)
Ablinger, J.: Computing the inverse Mellin transform of holonomic sequences using Kovacic’s
algorithm, PoOS(RADCOR2017)001 [arXiv: 1801.01039] (RADCOR2017)

Ablinger, J.: An improved method to compute the inverse Mellin transform of holonomic sequences,
PoS (LL2018) 063; J Bliimlein, Structural Relations of Harmonic Sums and Mellin Transforms up to
Weight w = 5, vol. 180. [arXiv: 0901.3106] (2009)

Ablinger, J.: Discovering and proving infinite binomial sums identities, Experimental Mathematics 26
[arXiv: 1507.01703] (2017)

Ablinger, J.: Discovering and proving infinite Pochhammer sum identities, arXiv: 1902.11001 (2019)
Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A. 15, 725-754 (2000).
[arXiv: hep-ph/9905237]

Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11(4), 1071-1075 (1971)
Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial
coefficients. USSR. Comput. Math. Math. Phys. bf. 29(6), 7-12 (1989)

Abramov, S.A., Petkovsek, M.: On polynomial solutions of linear partial differential and (q-)difference
equations. In: Proc., CASC, pp. 1-11 (2012)

Bliimlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys.
Commun. 159, 19-54 (2004). [arXiv: hep-ph/0311046]

Ablinger, J., Schneider, C.: Algebraic independence of sequences generated by (cyclotomic) harmonic
sums. Ann. Comb. 22, 213-244 (2018). [arXiv: 1510.03692]

Schlifli, L.: Ueber die allgemeine Moglichkeit der conformen Abbildung einer von Geraden begrenzten
ebenen Figur in eine Halbebene. J Reine Angew Math 78, 63-80 (1874)

Erdé, Lyi., A.: Integraldarstellungen fiir Produkte Whittakerscher Funktionen. Nieuw. Arch. Wisk. 20,
1-34 (1939)

Saran, S.: The solutions of certain hypergeometric equations. Proc. Nat Acad. Sci. India Sect. A. 21,
404408 (1955)

Pandey, R.C.: On certain hypergeometric transformations. J. Math. Mech. 12, 113-118 (1963)
Srivastava, H.M.: Hypergeometric functions of three variables. Ganita. 15, 97-108 (1964)

Srivastava, H.M.: Some integrals representing triple hypergeometric functions. Rend. Circ. Mat.
Palermo. 16(2), 99-115 (1967)

Dhawan, G.K.: Hypergeometric functions of three variables. Proc. Nat. Acad. Sci. India Sect. A. 40,
43-48 (1970)

Srivastava, H.M.: A note on certain hypergeometric differential equations. Mat. Vesnik. 9(24), 101-107
(1972)

Exton, H.: On a certain hypergeometric differential system (II). Funkcial. Ekvac. 16, 189-194 (1973)
Samar, M.S.: Some definite integrals. Vijnana Parishad Anusandhan Patrika 16, 7-11 (1973)

Exton, H.: Hypergeometric functions of three variables. J. Indian Acad. Math. 4, 113-119 (1982)
Decker, W., Greuel, G.-M., Pfister, G., Schonemann, H.: Singular 4-2-0 — A computer algebra system
for polynomial computations. http://www.singular.uni-kl.de (2019)

Kauers, M., Levandovskyy, V.: An Interface between Mathematica and Singular, Technical Report 29,
SFB FO013. Johannes Kepler University Linz, Austria (2006)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1302.0378
http://arxiv.org/abs/1407.1822
http://arxiv.org/abs/2103.08330
http://arxiv.org/abs/1310.5645
http://arxiv.org/abs/1407.6180
http://arxiv.org/abs/1011.1176
http://arxiv.org/abs/1305.0687
http://arxiv.org/abs/1507.01703
http://arxiv.org/abs/1801.01039
http://arxiv.org/abs/0901.3106
http://arxiv.org/abs/1507.01703
http://arxiv.org/abs/1902.11001
http://arxiv.org/abs/hep-ph/9905237
http://arxiv.org/abs/hep-ph/0311046
http://arxiv.org/abs/1510.03692
http://www.singular.uni-kl.de

	Hypergeometric structures in Feynman integrals
	Abstract
	Introduction
	The differential and underlying difference equations
	The solution of the recursions
	An algorithm for hypergeometric products
	Examples

	Computing the expansion in 
	The –expansion of the summand
	Symbolic summation

	The full machinery
	Example 1
	Example 2
	Example 3

	Partial difference equations with rational coefficients
	The basic problem description
	Denominator bounds
	Determination of the numerator
	Treatment of a hypergeometric prefactor
	Finding solutions in terms of nested sums
	Matching the solution to initial values
	Finding the solution in a series expansion


	Conclusions
	Appendix A The multiple series representation
	 B: Mapping conditions to the Pochhammer case
	Appendix B B: Mapping conditions to the Pochhammer case
	 C: A brief descriptions of the commands of HypSeries
	Appendix C C: A brief descriptions of the commands of HypSeries
	 D: A brief descriptions of the commands of solvePartialLDE
	Appendix D D: A brief descriptions of the commands of solvePartialLDE
	 E: A constant
	Appendix E E: A constant
	 F: Software required
	Appendix F F: Software required
	Declarations
	References




